Skip to main content

Casimir Effect Contribution to the Cosmological Constant

  • Conference paper
Modern Theoretical and Observational Cosmology

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 276))

  • 206 Accesses

Abstract

I consider the contribution to the cosmological constant of the Casimir energy of a scalar field of extremely low mass filling the universe (a spacetime of the type, e.g., R × T p × T q, R × T p × S q,…). This effect is driven by ‘natural’ compactifying boundary conditions, imposed on some of the coordinates, associated both with large and with small scales (the total number of large spatial coordinates being always three). The very small—but non zero—value of the cosmological constant obtained from recent astrophysical observations can be matched with the results coming from the model, by just fixing the numbers of —actually compactified—ordinary and tiny dimensions to be very acceptable ones. The compactification radius are taken to be the one corresponding to the present observable universe (for large dimensions), and in the range (1–103) l pl , where l pl is the Planck length (for the small ones). The mass of the scalar field is of, at most, M ≤ 1.2 × 10−32 eV, perfectly compatible with the very strict observational bounds. Finally, a marginally closed universe is favoured by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  2. A.G. Riess et al. [Hi-Z Supernova Team Collaboration], Astron. Journ, 116, 1009 (1998).

    Article  ADS  Google Scholar 

  3. A.G. Riess, The case for an accelerating universe from supernovae, astro-phl0005229.

    Google Scholar 

  4. S.M. Carroll, LivingRev. ReI. 4, 1 (2001).

    Google Scholar 

  5. P. de Bernardis et al., Nature 404, 955 (2000).

    Article  ADS  Google Scholar 

  6. S. Hanany et al., MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10′ to 5 o, astro-phl0005123; A. Balbi et al., Constraints on cosmological parameters from MAXIMA-1, astro-ph/0005124.

    Google Scholar 

  7. V. Sahni and A. Starobinsky, The case for a positive cosmological A—term, astrophl9904398.

    Google Scholar 

  8. I.L. Shapiro and J. Solà, Phys. Lett. B475, 236 (2000).

    Google Scholar 

  9. T.R. Mongan, A simple quantum cosmology, gr-qc/0103021, Gen. Rel. and Grav., to appear.

    Google Scholar 

  10. S. Weinberg, The cosmological constant problems, astro-phl0005265.

    Google Scholar 

  11. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989); S. Coleman, Nuci. Phys. B307, 867 (1988); E. Baum, Phys. Lett. B133, 185 (1984); S.W. Hawking, Phys. Lett. B134, 403 (1984); Nature 248, 30 (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. H.B.G. Casimir, Proc. K. Ned. Acad. Wet. 51, 635 (1948).

    Google Scholar 

  13. E. Elizalde, J. Math. Phys. 35, 3308 (1994); E. Elizalde, J. Math. Phys. 35, 6100 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. T. Banks, M. Dine and A.E. Nelson, JHEP 9906, 014 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko and S. Zerbini, Zeta regularization techniques with applications (World Sci., Singapore, 1994).

    Book  MATH  Google Scholar 

  16. E. Elizalde, Ten physical applications of spectral zeta functions (Springer, Berlin, 1995).

    MATH  Google Scholar 

  17. E. Elizalde, Nuovo Cim. 104B, 685 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  18. S.W. Hawking, Commun. Math. Phys. 55 133 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P. Ramond, Field Theory, a Modem Primer (Benjamin, Reading, Mass., 1981).

    Google Scholar 

  20. N. Birrell and P.C.W. Davies, Quantum Fields in Curved Spaces (Cambridge University Press, Cambridge, 1982).

    Book  Google Scholar 

  21. S.W. Hawking and W. Israel, Eds., General Relativity, an Einstein Centenary Survey (Cambridge University Press, 1979).

    Google Scholar 

  22. K. Kirstenand E. Elizalde, Phys. Lett. B365, 72 (1995).

    Google Scholar 

  23. E. Elizalde, Commun. Math. Phys. 198, 83 (1998); E. Elizalde, J. Phys. A30, 2735 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. E. Elizalde, J. Comput. Appl. Math. 118 (2000) 125

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. E. Elizalde, J. Phys. A34, 3025 (2001).

    MathSciNet  ADS  MATH  Google Scholar 

  26. M. Kontsevich and S. Vishik, Functional Analysis on the Eve of the 21st Century. Volume 1, 173 (1993).

    Google Scholar 

  27. [27] M. Bordag, E. Elizalde and K. Kirsten, J. Math. Phys. 37 (1996) 895; M. Bordag, E. Elizalde, K. Kirstenand S. Leseduarte, Phys. Rev. D56 (1997) 4896; E. Elizalde, L. Vanzo and S. Zerbini, Commun. Math. Phys. 194 (1998) 613.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. L. Parker and A. Raval, Phys. Rev. D62, 083503 (2000).

    Google Scholar 

  29. E. Elizalde, J. Phys. A27, L299 (1994).

    MathSciNet  ADS  MATH  Google Scholar 

  30. V. Sahni and S. Habib, Phys. Rev. Lett. 81, 1766 (1998); L. Parker and A. Raval, Phys. Rev. D60, 063512 and 123502 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Elizalde, E. (2002). Casimir Effect Contribution to the Cosmological Constant. In: Plionis, M., Cotsakis, S. (eds) Modern Theoretical and Observational Cosmology. Astrophysics and Space Science Library, vol 276. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0622-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0622-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3931-4

  • Online ISBN: 978-94-010-0622-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics