Skip to main content

New Insights into the Molecular Mechanisms of Vascular Permeability in Diabetes

  • Chapter
  • 80 Accesses

Abstract

Diabetic retinopathy is a leading cause of blindness in working age people in the United States and contributes significantly to vision loss in the young and elderly. The increasing rate of incidence of diabetes will further impact the visual health of this country unless new treatment modalities are discovered to prevent and cure diabetic retinopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vitale S, Maguire MG, Murphy RP, et al. Clinically significant macular edema in type I diabetes. Incidence and risk factors. Ophthalmology 1995; 102: 1170–1176.

    PubMed  CAS  Google Scholar 

  2. Klein R, Klein BEK, Moss SE, Cruscishanks KJ. The Wisconsin epidemiologic study of diabetid retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 1995; 102: 7–16.

    PubMed  CAS  Google Scholar 

  3. Anonymous. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. Ophthalmology 1995; 102: 647–661.

    Google Scholar 

  4. Paques M, Massin P, Gaudric A. Growth factors and diabetic retinopathy. Diabetes & Metabolism 1997; 23: 125–130.

    CAS  Google Scholar 

  5. Aiello LP. Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies. Ophthalmic Research 1997; 29: 354–362.

    Article  PubMed  CAS  Google Scholar 

  6. Miller JW. Vascular endothelial growth factor and ocular neovascularization [comment] [see comments]. American Journal of Pathology 1997; 151: 13–23.

    PubMed  CAS  Google Scholar 

  7. Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes-Metabolism Reviews 1997; 13: 37–50.

    Article  PubMed  CAS  Google Scholar 

  8. Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata, H, Sueishi, K. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Laboratory Investigation 1996; 74: 819–825.

    PubMed  CAS  Google Scholar 

  9. Gilbert RE, Vranes D, Berka JL, Kelly DJ, Cox A, Wu LL, Stacker SA, Cooper ME. Vascular endothelial growth factor and its receptors in control and diabetic rat eyes. Laboratory Investigation 1998; 78: 1017–1027.

    PubMed  CAS  Google Scholar 

  10. Hammes HP, Lin J, Bretzel RG, Brownlee M, Breier G. Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 1998; 47: 401–406.

    Article  PubMed  CAS  Google Scholar 

  11. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park, JE, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Eng J Med 1994; 331: 1480–1487.

    Article  CAS  Google Scholar 

  12. Adamis AP, Miller JW, Bernai MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. American Journal of Ophthalmology 1994; 118: 445–450.

    PubMed  CAS  Google Scholar 

  13. Chen YS, Hackett, SF, Schoenfeld CL, Vinores MA, Vinores SA, Campochiaro PA. Localization of vascular endothelial growth factor and its receptors to cells of vascular and avascular epiretinal membranes. British Journal of Ophthalmology 1997; 81: 919–926.

    Article  PubMed  CAS  Google Scholar 

  14. Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Inv Ophthal Vis Sci 1997; 38: 36–47.

    CAS  Google Scholar 

  15. Lutty GA, McLeod DS, Merges C, Diggs A, Plouét J. Localization of vascular endothelial growth factor in human retina and choroid. Arch Ophthalmol 1996; 114: 971–977.

    Article  PubMed  CAS  Google Scholar 

  16. Gerhardinger C, Brown LF, Roy S, Mizutani M, Zucker CL, Lorenzi M. Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. American Journal of Pathology 1998; 152: 1453–1462.

    PubMed  CAS  Google Scholar 

  17. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King G.L, Smith LE. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci 1995; 92: 10457–10461.

    Article  PubMed  CAS  Google Scholar 

  18. Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, Takagi H, Newsome WP, Jirousek MR, King GL. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. Journal of Clinical Investigation 1996; 98: 2018–2026.

    Article  PubMed  CAS  Google Scholar 

  19. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 1997; 46: 1473–1480.

    Article  PubMed  CAS  Google Scholar 

  20. Seo MS, Kwak N, Ozaki H, Yamada H, Okamoto N, Yamada E, Fabbro D, Hofmann F, Wood JM, Campochiaro PA. Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. American Journal of Pathology 1999; 154: 1743–1753.

    Article  PubMed  CAS  Google Scholar 

  21. Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, LaRochelle W, Zack DJ, Campochiaro PA, Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization [see comments]. American Journal of Pathology 1997; 151: 281–291.

    PubMed  CAS  Google Scholar 

  22. Tobe T, Okamoto N, Vinores MA, Derevjanik NL, Vinores SA, Zack, DJ, Campochiaro PA. Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Investigative Ophthalmology & Visual Science 1998; 39: 180–188.

    CAS  Google Scholar 

  23. Sill HW, Chang YS, Artman JR, Frangos JA, Hollis TM, Tarbeil JM. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am J Physiol 1995; 268: H535–H543.

    PubMed  CAS  Google Scholar 

  24. Cuypers MH, Kasanardjo JS, Polak BC. Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter. Graefes Arch Clin Exp Ophthalmol 2000; 238: 935–941.

    Article  PubMed  CAS  Google Scholar 

  25. MacKinnon JR, McKillop G, O’Brien C, Swa K, Butt Z, Nelson P. Colour Doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmol Scand 2000; 78: 386–389.

    Article  PubMed  CAS  Google Scholar 

  26. Mori F, King GL, Clermont AC, Bursell DK, Bursell SE. Endothelin-3 regulation of retinal hemodynamics in nondiabetic and diabetic rats. Invest Ophthalmol Vis Sci 2000; 41: 3955–3962.

    PubMed  CAS  Google Scholar 

  27. MacRury SM, Small M, MacCuish AC, Lowe GD. Association of hypertension with blood viscosity in diabetes. Diabetic Medicine 1988; 5: 830–834.

    Article  PubMed  CAS  Google Scholar 

  28. Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis A.P. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 10836–10841.

    Article  PubMed  CAS  Google Scholar 

  29. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Micro Immunol 1999; 237: 97–132.

    Article  CAS  Google Scholar 

  30. Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. Journal of Experimental Medicine 1996; 183: 1981–1986.

    Article  PubMed  CAS  Google Scholar 

  31. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. Journal of Physiology 1997; 504: 747–761.

    Article  PubMed  CAS  Google Scholar 

  32. Feng D, Nagy JA, Pyne K, Hammel I, Dvorak HF, Dvorak AM. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 1999; 6: 23–44.

    PubMed  CAS  Google Scholar 

  33. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Investigative Ophthalmology & Visual Science 1999; 40: 157–167.

    CAS  Google Scholar 

  34. Farquhar MG, Palade G. J Cell Biol 1963; 17: 375.

    Article  PubMed  CAS  Google Scholar 

  35. Cunha-Vaz JG, Shakib M, Ashton N. Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. British Journal of Ophthalmology 1966; 50: 441–453.

    Article  PubMed  CAS  Google Scholar 

  36. Shakib M, Cunha-Vaz JG. Studies on the permeability of the blood-retinal barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood-retinal barrier. Experimental Eye Research 1966; 5: 229–234.

    Article  PubMed  CAS  Google Scholar 

  37. Staehelin LA. Further observations on the fine structure of freeze-cleaved tight junctions. Journal of Cell Science 1973; 13: 763–786.

    PubMed  CAS  Google Scholar 

  38. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. Journal of Cell Biology 1967; 34: 207–217.

    Article  PubMed  CAS  Google Scholar 

  39. Citi S, Cordenonsi M. Tight junction proteins. Biochimica and Biophysica Acta 1998; 1448: 1–11.

    Article  CAS  Google Scholar 

  40. Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. American Journal of Physiology 1998; 274: Fl–9.

    Google Scholar 

  41. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annual Review of Physiology 1998; 60: 121–142.

    Article  PubMed  CAS  Google Scholar 

  42. Stevenson BR, Keon BH. The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 1998; 14: 89–109.

    Article  PubMed  CAS  Google Scholar 

  43. Matter K, Balda MS. Occludin and the functions of tight junctions. International Review of Cytology 1999; 186: 117–146.

    Article  PubMed  CAS  Google Scholar 

  44. Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biology 1996; 133: 43–47.

    Article  CAS  Google Scholar 

  45. Hirase T, Staddon JM, Saitou M, Anod-Akatsuka Y, Itoh, M Furuse M, Fujimoto K, Tsukita S, Rubin LL. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603–1613.

    PubMed  CAS  Google Scholar 

  46. McCarthy KM, Skare I, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger E. Occludin is a functional component of the tight junction. J Cell Sci 1996; 109: 2287–2298.

    PubMed  CAS  Google Scholar 

  47. Van Itallie CM, Anderson JM. Occludin confers adhesiveness when expressed fibroblasts. J Cell Sci 1997; 110: 1113–1121.

    PubMed  Google Scholar 

  48. Chen Y, Merzdorf C, Paul DL, Goodenough DA. COOH terminus of occludin is required for tight junction barrier function in early xenopus embryos. J Cell Biol 1997; 138: 891–899.

    Article  PubMed  CAS  Google Scholar 

  49. Kevil CG, Okayama N, Trocha SD, Kalogeris TJ, Coe LL, Specian RD, Davis CP, Alexander JS. Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation 1998; 5: 197–210.

    PubMed  CAS  Google Scholar 

  50. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. Journal of Cell Biology 1998; 141: 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  51. Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 1999; 96: 511–516.

    Article  PubMed  CAS  Google Scholar 

  52. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. Journal of Cell Biology 1999; 147: 891–903.

    Article  PubMed  CAS  Google Scholar 

  53. Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. Journal of Cell Biology 1999; 147: 185–194.

    Article  PubMed  CAS  Google Scholar 

  54. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands [in process citation]. Mol Biol Cell 2000; 11: 4131–4142.

    PubMed  CAS  Google Scholar 

  55. Anderson JM, Itallie CMV. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467–G476.

    PubMed  CAS  Google Scholar 

  56. Anderson JM, Fanning AS, Lapierre L, Van Itallie CM. Zonula occludens (ZO)-1 and ZO-2: membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. Biochemical Society Transactions 1995; 23: 470–475.

    PubMed  CAS  Google Scholar 

  57. Furuse M, Itoh M, Hirase T, Nagafuchi S, Yonemura S, Tsukita S, Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127: 1617–1626.

    Article  PubMed  CAS  Google Scholar 

  58. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction — Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. Journal of Biological Chemistry 1999; 274: 35179–35185.

    Article  PubMed  CAS  Google Scholar 

  59. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. Journal of Biological Chemistry 1998; 273: 29745–29753.

    Article  PubMed  CAS  Google Scholar 

  60. Schillace RV, Scott JD. Organization of kinases, phosphatases, and receptor signaling complexes. Journal of Clinical Investigation 1999; 103: 761–765.

    Article  PubMed  CAS  Google Scholar 

  61. Giepmans BNG, Moolenaar WH. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 1998; 8: 931–934.

    Article  PubMed  CAS  Google Scholar 

  62. Itoh M, Nagafuchi A, Moroi S, Tsukita S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to a catenin and actin filaments. J Cell Biol 1997; 138: 181–192.

    Article  PubMed  CAS  Google Scholar 

  63. Antonetti D, Barber A, Khin S, Lieth E, Tarbell J, Gardner T, Group, a.t.P.S.R.R. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content. Diabetes 1998; 47: 1953–1959.

    Article  PubMed  CAS  Google Scholar 

  64. Wang W, Dentier, WL, Borchardt RT. 2001. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol 1998; 280: H434–440.

    PubMed  CAS  Google Scholar 

  65. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999; 274: 23463–23467.

    Article  PubMed  CAS  Google Scholar 

  66. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Investigative Ophthalmology & Visual Science 2000; 41: 3561–3568.

    CAS  Google Scholar 

  67. Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. Journal of Biological Chemistry 1998; 273: 15099–15103.

    Article  PubMed  CAS  Google Scholar 

  68. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari C, Bettinelli A, Colussi C, Rodriguez-Soriano J, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999; 285: 103–106.

    Article  PubMed  CAS  Google Scholar 

  69. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4: 915–924.

    Article  PubMed  CAS  Google Scholar 

  70. Lakshminarayanan S, Antonetti DA, Gardner TW, Tarbell JM. Effect of VEGF on retinal microvascular endothelial hydraulic conductivity: the role of NO. Invest Ophthalmol Vis Sci 2000; 41: 4256–4261. [MEDLINE record in process].

    PubMed  CAS  Google Scholar 

  71. Mayhan WG. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol 1999; 276: C1148–1153.

    PubMed  CAS  Google Scholar 

  72. Tilton RG, Chang KC, LeJeune WS, Stephan CC, Brock TA, Williamson JR. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF. Invest Ophthalmol Vis Sci 1999; 40: 689–696.

    PubMed  CAS  Google Scholar 

  73. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. Journal of Biological Chemistry 1999; 274: 25130–25135.

    Article  PubMed  CAS  Google Scholar 

  74. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. Journal of Clinical Investigation 1998; 102: 783–791.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Antonetti, D.A., The Penn State Retina Research Group. (2002). New Insights into the Molecular Mechanisms of Vascular Permeability in Diabetes. In: Friedman, E.A., L’Esperance, F.A. (eds) Diabetic Renal-Retinal Syndrome. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0614-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0614-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3930-7

  • Online ISBN: 978-94-010-0614-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics