Skip to main content

Evaluation of Strain Rate Effects on Transition Behaviour Applying the Master Curve Methodology

  • Chapter
Transferability of Fracture Mechanical Characteristics

Part of the book series: NATO Science Series ((NAII,volume 78))

Abstract

The master curve methodology has been used for an evaluation of strain rate effects on transition behaviour of cast ferritic CrMo steel. The physical aspects of strain rate effect on reference temperature has been analysed as a base for the prediction of this dependence. Statistical aspects of the strain rate effects on the reference temperature and the shift of master curve on temperature axis has been discussed showing capability of the method for the prediction of strain rate susceptibility of steel fracture behaviour

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallin K., (1993), Macroscopic Nature of Brittle Fracture, J. de Physique, Colloq 7, Suppl J. de Physique II, Vol. 3, pp 575–583.

    Google Scholar 

  2. Wallin, K. (1995) Validity of Small Specimen Fracture Toughness Estimates Neglecting Constraint Correction, Constraint Effect in Fracture, ASTM STP 1244, Eds. M. Kirk, Ad Bakker, pp. 519–537.

    Google Scholar 

  3. ASTM E 1921-97, Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range.

    Google Scholar 

  4. Joyce, J.A, Tregoning, R.L. (2001) Development of the TO reference temperature from precracked Charpy specimens, Engineering Fracture Mechanics 68, pp. 861–894.

    Article  Google Scholar 

  5. Wallin K., Planman, T., Valo, M., Rintamaa R. (2001) Applicability of miniature size bend specimens to determine the master curve reference temperature TO, Engineering Fracture Mechanics 68, 1265–1296.

    Article  Google Scholar 

  6. Kirk M. T., Natishan M. E., Wagenhofer M. (2001) Microstructural Limits of Applicability of the Master Curve, ASTM STP 1406, pp. 1–16.

    Google Scholar 

  7. Natishan, M., Rosinski S., Wagenhofer, M. (2001) Implementation of a Physics-based, predictive model for fracture toughness transition behaviour, IAEA Specialists Meeting on Master Curve Testing and Results Application, Prague, Paper No.4..

    Google Scholar 

  8. Holzmann, M., Dlouhý, I., Brumovsky, M. (1999) Measurement of fracture toughness transition behaviour Cr-Ni-Mo-V pressure vessel steel using pre-cracked Charpy specimens, Inter, J. Pressure Vessel and Piping, 1999, 76, pp. 591–598.

    Article  Google Scholar 

  9. Dlouhy, I., Lenkey, G., Holzmann, M.: Master Curve Evaluation at Static and Dynamic Conditions of Loading for Casts Ferritic Steel, SMIRT 16 — 16th International Conference on Structural Mechanics in Reactor Technology, Washington DC, August 12-17, 2001, Paper #G10/3.

    Google Scholar 

  10. Wallin, K. (1993) Irradiation damage effects on the fracture toughness transition curve shape for reactor pressure vessel steels, International Journal of Pressure Vessel and Piping, 55, pp. 61–79.

    Article  Google Scholar 

  11. Kirk, (2001) Shift in toughness transition temperature due to irradiation: TO vs. T41J, a comparison and rationalisation of differences, IAEA Specialists Meeting on Master Curve Testing and Results Application, Prague, Paper No.23.

    Google Scholar 

  12. Wallin, K., Planman, T. (2001) Effect of strain rate on the fracture toughness of ferritic steels, IAEA Specialists meeting on Master Curve Testing and Results Application, Prague, pp.

    Google Scholar 

  13. Viehrig, H.W., Boehmert, J., Dzugan, J. (2001) Use of instrumented Charpy impact tests for master curve determination, IAEA Specialists Meeting on Master Curve Testing and Results Application, Prague, pp.

    Google Scholar 

  14. Joyce J. A., (1998) On the Utilization of High Rate Charpy Test Results and the Master Curve to Obtain Accurate Lower Bound Toughness Predictions, Small specimens test techniques, ASTM STP 1329, W.R. Corwin, S.T: Rosinski, and E. Van Walle eds., pp. 3–14.

    Google Scholar 

  15. I. Dlouhy, G. B. Lenkey, M. Holzmann (2002) Master curve validity for dynamic fracture toughness characteristics, The Transferability of Fracture Mechanical Characteristics, Kluwer, paper in this Volume.

    Google Scholar 

  16. Yoon K.K., Van Der Sluys W.A., Hour K. (2000) Effect of Loading Rate on Fracture Toughness of Pressure Vessel Steels”, J. Pressure Vessel Technology, pp. 125–129.

    Google Scholar 

  17. Roberts W.: (1984) Dynamic changes that occur during hot working and their significance regarding microstructural development and hot workability. In: Krauss G. (ed.): Deforming, Processing, and Structure, Metals Park (Ohio, USA), American Society for Metals.

    Google Scholar 

  18. Kratochvíl P., Lukáč P., SpruSil B.: Introduction to Metal Physics I (in Czech), SNTL/Alfa 1984.

    Google Scholar 

  19. Holzmann M. and Dlouhy I. (2002) The effect of Loading Rate on Reference Temperature and Master Curve, manuscript of paper under preparation for Int. Journal of Pressure Vessel and Piping.

    Google Scholar 

  20. CSN EN ISO 12737 — Metallic Materials — Determination of Plane strain Fracture Toughness, 2001.

    Google Scholar 

  21. ASTM E 1820-99a — Standard Test Method for Measurement of Fracture Toughness, 1999.

    Google Scholar 

  22. Holzmann, M., Jurâšek L, Dlouhý, I., 920020 Master Curve Metodology and Data Transfer from Small on Standard Specimen,, this volume.

    Google Scholar 

  23. Holzmann, M. (1997) Sbornik Cesko-Slovenské mezinârodni konf. “Ocelové konstrukce a mosty ′97”, květen 1997, Eds. J. Melcher, J. Skyva, vyd. CENTA, Ltd, Brno, pp.. 4-21-4.30 (in Czech).

    Google Scholar 

  24. Eurocode 3 (April 1996) Design of Steel Structures, Part 2, Steel Bridges, ENV 1993 — 2Draft.

    Google Scholar 

  25. Barsom, J. M. and Rolfe, T. S. (1999) Fracture and Fracture Control in Structures, ASTM, PA 19428-2959.

    Google Scholar 

  26. Wallin, K., Validity of Small Specimen Fracture Toughness Estimate Neglecting Constrain, ASTM STP 1244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kohout, J., Jurášek, V., Holzmann, M., Dlouhý, I. (2002). Evaluation of Strain Rate Effects on Transition Behaviour Applying the Master Curve Methodology. In: Dlouhý, I. (eds) Transferability of Fracture Mechanical Characteristics. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0608-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0608-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0795-8

  • Online ISBN: 978-94-010-0608-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics