Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 78))

  • 648 Accesses

Abstract

The applications of toughness scaling diagrams for correction of fracture toughness data in regime of constraint loss have been followed. The applications included adjustment of invalid data from standard specimens and correction of fracture toughness values generated by pre-cracked Charpy type specimens (P-CVN). Standard three point bend specimens have been tested to get the reference values. The Dodds-Anderson toughness scaling model was applied for toughness data correction and transfer from P-CVN specimens being combined with master curve methodology for fracture toughness — temperature diagram quantification. Local parameters, Weibull stress and parameter of scatter have been applied for another toughness scaling diagram calculation. Also in this case good correlation of predicted data with the real fracture behaviour has been found

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Dowd, N.P. and Shih, CF. (1991) Family of crack tip fields characterised by a triaxiality parameter, Part I and II, Journal of the Mechanics and Physics of Solids, Vol. 39, No. 8, pp. 989–1015 and Vol. 40, pp. 939-963.

    Article  ADS  Google Scholar 

  2. Betegon, C. and Hancock, J.W. (1991) Two parameter Characterisation of elastic plastic crack tip field, Journal of Applied Mechanics, Vol. 58, pp. 104–113.

    Article  ADS  Google Scholar 

  3. Pineau, A, (1992) Global and local approaches to fracture transferability of laboratory test results to component In Topics in Fracture and Fatigue, A.S. Argon, Ed., Springer Verlag, pp. 197–234

    Google Scholar 

  4. Anderson, T.L, Dodds, R.H., (1991) Specimen size requirements for fracture toughness testing in the transition region, Journal of Testing and Eval, Vol. 19, pp. 123–134.

    Article  Google Scholar 

  5. Dodds, R.H., Anderson, T.H, Kirk, M.T. (1991) A framework to correlate a/W ration effects on elastic-plastic fracture toughness (Jc), International J. of Fracture, 48, pp. 1–22.

    Article  Google Scholar 

  6. Anderson T.L., R.H. Dodds Jr. (1993) Simple constraint corrections for subsized fracture toughness specimens, ASTM STP 1204, Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, pp. 93–105

    Google Scholar 

  7. Parks, D.M. (1992) Advances in characterisation of elastic-plastic crack tip fields, Topics in Fracture and Fatigue, A.S. Argon, ed., Springer Verlag, pp. 59–98.

    Google Scholar 

  8. Chlup, Z., Dlouhy, I. (2002) Micromechanical aspects of constraint effect at brittle fracture initiation, The Transferability of Fracture Mechanical Characteristics, paper in this volume.

    Google Scholar 

  9. Chao, Y. J. and Sutton, M.A. (1994) On the fracture of solids characterised by one or two parameters, Journal of Mechanics and Physics of Solids, Vol. 42, pp. 629–647.

    Article  ADS  Google Scholar 

  10. Sorem, W.A., Dodds, R.H.Jr, Rolfe, S.R. (1991) Effects of crack depth on elastic plastic fracture toughness, International Journal of Fracture, 47, pp. 105–126.

    Article  Google Scholar 

  11. Dodds, R.H.Jr, Ruggieri, C., Koppenhoefer, K. (1997), 3D constraint effects on models for transferability of cleavage fracture toughness, Fatigue and Fracture Mechanics: 28th volume, ASTM STP 1321, J. H. Underwood and B.D. MacDonald, M.R. Mitchell, Eds., pp. 179–197.

    Google Scholar 

  12. Dlouhy I., Kozâk V., Válka L., Holzmann M. (1996) The susceptibility of local parameters on steel microstructure evaluated using Charpy type specimen. Proc. of Conf-EUROMECH — MECAMAT ′96, Fontainebleau.

    Google Scholar 

  13. Anderson, T.L., Vanaparthy, N.M.R. and Dodds, R.H. Jr. (1993) Predictions of specimen size dependence on fracture toughness for cleavage and ductile tearing, Constraint Effects in Fracture, ASTM STP 1171, Hackett, Schwalbe and Dodds eds. pp. 473–491.

    Google Scholar 

  14. Nevalainen, M., Dodds, R.H. (1995) Numerical investigation of 3D constraint effects on brittle fracture in SE(B) and C(T) specimens, International Journal of Fracture, 74, pp.131–161.

    Article  Google Scholar 

  15. Beremin, F. M., (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metal. Trans. A, Vol. 14A, pp. 2277–2287.

    Article  ADS  Google Scholar 

  16. Mudry F. (1987) A local approach to cleavage fracture, Nuclear Engineering and design, Vol. 105, pp. 65–76.

    Article  Google Scholar 

  17. Minami, F., Brückner Foit, A., Munz, D., Trolldenier, B. (1992) Estimation procedure for the Weibull parameters used in the local approach, Internationaljournal of Fracture, Vol. 54, pp. 197–210.

    Google Scholar 

  18. Ruggieri, C., Dodds, R.H., (1996) A transferability model for brittle fracture including constraint and ductile tearing effects: A probabilistic approach, Internationaljournal of Fracture, Vol. 79, pp. 309–340.

    Article  Google Scholar 

  19. Ruggieri, C., Dodds, R.H., Wallin, K., (1998) Constraint effects on reference temperature TO, Engineering Fracture Mechanics, Vol. 60, pp. 14–36.

    Article  Google Scholar 

  20. Bakker, A. and Koers, R.W.J. (1991) Prediction of cleavage fracture events in the brittle ductile transition region of a ferritic steel. Defect Assessment in Components. Fundamentals and Applications, ESIS/EG9 Blauel and Schwalbe Eds., Mechanical Engineering Publication, London, pp. 613–632.

    Google Scholar 

  21. Koppenhoefer, K.C., Dodds, R.H. (1997) Constraint effects on fracture toughness of impact loaded, precracked Charpy specimens, Nuclear Engineering and Design, Vol. 162, pp. 145–158.

    Article  Google Scholar 

  22. Gao, X., Ruggieri, C., Dodds, R.H. (1998) Calibration of Weibull stress parameters using fracture toughness data. International Journal of Fracture, 92, pp. 175–200.

    Article  Google Scholar 

  23. Gao X., Dodds, R.H. Jr. (2001) An engineering approach to asses constraint effects on cleavage fracture toughness, Engineering Fracture Mechanics, 68, pp. 263–283.

    Article  Google Scholar 

  24. Dlouhy, I., Holzmann, M., Chlup, Z. (2002) Fracture resistance of cast ferritic C-Mn steel for container of spent nuclear fuel, Transferability of fracture mechanical characteristics, Kluwer, contribution in this volume.

    Google Scholar 

  25. Kozak V., Janik A. (2002) The use of the local approach for the brittle fracture prediction, The Transferability of Fracture Mechanical Characteristics, paper in this volume.

    Google Scholar 

  26. ESIS P6/98 (1998) Procedure to measure and Calculate Local Approach Criteria Using Notched Tensile specimens, ESIS document

    Google Scholar 

  27. Standard Test Method For the Determination of Reference Temperature To for Ferritic Steels in the Transition range, ASTM, E1921-97.

    Google Scholar 

  28. Kozák V., Holzmann M., Dlouhy I (2001) The transferability of brittle fracture toughness characteristics, Structural Mechanics in Reactor Technology; SMIRT 16, Washington DC, Proc. on CD ROM.

    Google Scholar 

  29. Sherry A.H., Lidbury, D.P.G., Bass, B.. Williams, P.T. (2001) Development in local approach methodology with application to analysis / re-analysis of the NESC-1 PTS benchmark experiments, Int. J. of Pressure Vessel and Piping, 78, pp. 237–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dlouhý, I., Kozák, V., Holzmann, M. (2002). Toughness Scaling Model Applications. In: Dlouhý, I. (eds) Transferability of Fracture Mechanical Characteristics. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0608-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0608-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0795-8

  • Online ISBN: 978-94-010-0608-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics