Skip to main content

Damage Mechanisms and Local Approach to Fracture

Part I: Ductile fracture

  • Chapter
  • 652 Accesses

Part of the book series: NATO Science Series ((NAII,volume 78))

Abstract

This work aims at the application of local approach to ductile fracture. GTN model is used in order to model damage for different materials. The problem of parameter identification is pointed out. Mesh size dependency of the results is also tackled. GTN model is found to be able to predict ductile fracture for different materials with different damage mechanisms, provided that damage mechanisms are correctly determined: cast iron with high initial void volume fraction, duplex stainless steel with void nucleation as a major part of damage, low alloy steel, with a combination of small initial void volume fraction and void nucleation

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lemaitre, J. (1986) Local approach of fracture, Engineering Fracture Mechanics 25, 523–537.

    Article  Google Scholar 

  2. Mudry, F. (1987) A local approach to cleavage fracture, Nuclear Engineering and Design 105, 65–76

    Article  Google Scholar 

  3. Mc Clintock (1968) On the ductile enlargement of voids in triaxial stress fields, J. of Mechanics Physics and Solids 17, 201–217.

    Google Scholar 

  4. Rice, J.R. and Tracey, D.M. (1969) On the ductile enlargement of voids in triaxial stress fields, J. of Mechanics and Physics of Solids 17, 201–217.

    Article  ADS  Google Scholar 

  5. Budiansky, B., Hutchinson, J.W. and Slutsky, S. (1982) Void growth and collapse in viscous solids, in Mechanics of Solids, eds Hopkins H.G., Sewell M.J., 13–45.

    Google Scholar 

  6. Huang, Y. (1991) Accurate dilatation rates for spherical voids in triaxial stress fields, J. of Applied Mechanics 58, 1084–1086.

    Article  ADS  Google Scholar 

  7. Hancock, J.W. and Mackenzie, A.C. (1976) On the mechanisms of ductile failure in high strength steels subjected to multi-axial stress-states, J of Mechanics and Physics of Solids 24, 147–169.

    Article  ADS  Google Scholar 

  8. Marini, B., Mudry, F. and Pineau, A. (1985) Experimental study of cavity growth in ductile rupture, Engineering Fracture Mechanics 22, n°6, 989–996.

    Article  Google Scholar 

  9. Gurson, L.A. (1977) Continuum theory of ductile rupture by void nucleation and growth, J. of Engineering Materials and Technology, Jan., 2–15.

    Google Scholar 

  10. Tvergaard, V. (1981) Influence of voids on shear band instabilities under plane strain conditions, International J. of Fracture 17, 389–407.

    Article  Google Scholar 

  11. Tvergaard, V. (1982) On localization in ductile material containing spherical voids, International J. of Fracture 18, n°4, 337–352.

    Google Scholar 

  12. Zhang, Z.L. and Hauge, M. (1998) On the micro-mechanical parameters, ASTM-STP 1321.

    Google Scholar 

  13. He, R., Steglich, D., Heerens, J., Wang, G.W., Brocks, W. and Dahms, M. (1998) Influence of particle size and volume fraction on damage and fracture in Al-ADTi composites and micromechanical modelling using the GTN model, Fatigue and Fracture of Engineering Materials 21, 1189–1201.

    Article  Google Scholar 

  14. Brocks, W., Sun, D.Z. and Hönig, A. (1996) Verification of micromechanical models for ductile fracture by cell model calculations, Computational Material Science 7, 235–241.

    Article  Google Scholar 

  15. Joly, P., Pineau, A. and Meyzaud, Y. (1993) Fracture micromechanisms of an aged duplex stainless steel; application to the simulation of fracture of notched tensile and compact specimen, in Proceedings Mecamat 93: International seminar on micromechanisms of materials, 210–221.

    Google Scholar 

  16. Lemaitre, J. and Dufailly, J. (1987) Damage measurements, Engineering Fracture Mechanics 28, n°5-6, 643–661.

    Article  Google Scholar 

  17. Rousselier, G. (1987) Ductile fracture models and their potential in local approach to fracture, Nuclear Engineering and Design 105, 97–111.

    Article  Google Scholar 

  18. HKS ABAQUS/Standard, Version 5.8 (1998), Theory Manual, Hibbit, Karlsson and Sorensen Inc., USA.

    Google Scholar 

  19. Siegmund, T. and Brocks, W. (1997) A user-material subroutine incorporating the modified Gurson-Tvergaard-Needleman model of porous metal plasticity into ABAQUS finite element program, Technical report GKSS/WMG/97/2, GKSS, Geesthacht, Germany.

    Google Scholar 

  20. Bradley, W.L. and Srinivasan, M.N. (1990) Fracture and fracture toughness of ductile iron and cast steel, International Materials Reviews 35, n°3, 129–161.

    Article  Google Scholar 

  21. Kobayashi, T. and Yamada, S. (1994) Evaluation of static and dynamic fracture toughness in ductile cast iron, Metallurgical and. and Materiala Transactions 25A, 2427–2437.

    Article  ADS  Google Scholar 

  22. Dong, M.J., Prioul, C. and François, D. (1997) Damage effect on the fracture toughness of nodular cast iron: Part I and Part.II, Metallurgica and Materiala Transactions 28A, 2245–2262.

    Article  ADS  Google Scholar 

  23. Berdin, C., Dong, M.J. and Prioul, C. (2001) Local approach of damage and fracture toughness for nodular cast iron, Engineering Fracture Mechanics 68, 1107–1117.

    Article  Google Scholar 

  24. Bernauer, G. and Brocks, W. (2000) Micromechanical modelling of ductile damage and tearing — Results of a european numerical round robin, Report GKSS 2000/15.

    Google Scholar 

  25. Dong, M.J., Berdin, C., Béranger, A.S. and Prioul, C. (1996) Damage effect in the fracture toughness of nodular cast iron, J. de physique IV, 65–74.

    Google Scholar 

  26. Steglich, D. and Brocks, W. (1998) Micromechanical modelling of damage and fracture of ductile materials, Fatigue and Fracture of Engineering Materials 21, 1175–1188.

    Article  Google Scholar 

  27. Bompard, P. and François, D. (1984) Damaging effects of porosity on fracture of sintered Nickel Proceedings of ICF6, New Dehli, 1279.

    Google Scholar 

  28. ASTM, Standard method for measurement of fracture toughness, El 820-99.

    Google Scholar 

  29. HauSild, P., Berdin, C., Bompard, P. and Verdière, N. (2001) Ductile fracture of duplex stainless steel with casting defects, International J. of Pressure Vessels and Piping 78, 607–616.

    Article  Google Scholar 

  30. Besson, J., Devillers-Guerville, L. and Pineau, A. (2000) Modeling of scatter and size effect in ductile fracture: application to thermal embrittlement of duplex stainless steels, Engineering Fracture Mechanics 67, 169–190.

    Article  Google Scholar 

  31. Rossoll, A. (1998) Détermination de la ténacité d’un acier faiblement allié à partir de l’essai Charpy instrumenté, Ph.D thesis, Ecole Centrale Paris, France.

    Google Scholar 

  32. Rossoll, A., Berdin, C. and Prioul, C. (2002) Determination of the fracture toughness of a low alloy steel by the instrumented Charpy impact test, International J of Fracture, in press.

    Google Scholar 

  33. HauSild, P., Nedbal, I., Berdin, C., and Prioul, C. (2002) The influence of ductile tearing on fracture energy in the ductile-to-brittle transition temperature range, Material Science and Engineering A, in press.

    Google Scholar 

  34. Mäntylä, M., Rossoll, A., Nedbal, I., Prioul, C. and Marini, B. (1999) Fractographic observation of cleavage fracture initiation in a bainitic A508 steel, Journal of Nuclear Materials 264, 257–262.

    Article  Google Scholar 

  35. Chu, C.C. and Needleman, A. (1980) Void nucleation effects in biaxially stretched sheets, Journal of Engineering Materials and Technology 102, 249–256.

    Article  Google Scholar 

  36. Fisher, J.R. and Gurland, J. (1981) Void nucleation in spheroidized carbon steels-partl. Experiment, Metals Science 15, 185–192.

    Article  Google Scholar 

  37. Haušild, P. (2001) Transition ductile-fragile d’un acier faiblement allié, Internal Report, Ecole Centrale Paris, L.MSS-Mat, France.

    Google Scholar 

  38. Tvergaard, V. and Needleman, A. (1995) Effects of nonlocal damage in porous plastic solids, International J. of Solids and Structures 32, n°8-9, 1063–1077.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berdin, C., HauŠild, P. (2002). Damage Mechanisms and Local Approach to Fracture. In: Dlouhý, I. (eds) Transferability of Fracture Mechanical Characteristics. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0608-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0608-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0795-8

  • Online ISBN: 978-94-010-0608-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics