Skip to main content

Refugial isolation versus ecological gradients

Testing alternative mechanisms of evolutionary divergence in four rainforest vertebrates

  • Chapter
Microevolution Rate, Pattern, Process

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 8))

Abstract

Hypotheses for divergence and speciation in rainforests generally fall into two categories: those emphasizing the role of geographic isolation and those emphasizing the role of divergent selection along gradients. While a majority of studies have attempted to infer mechanisms based on the pattern of species richness and congruence of geographic boundaries, relatively few have tried to simultaneously test alternative hypotheses for diversification. Here we discuss four examples, taken from our work on diversification of tropical rainforest vertebrates, in which we examine patterns of genetic and morphological variation within and between biogeographic regions to address two alternative hypotheses. By estimating morphological divergence between geographically contiguous and isolated populations under similar and different ecological conditions, we attempt to evaluate the relative roles of geographic isolation and natural selection in population divergence. Results suggest that natural selection, even in the presence of appreciable gene flow, can result in morphological divergence that is greater than that found between populations isolated for millions of years and, in some cases, even greater than that found between congeneric, but distinct, species. The relatively small phenotypic divergence that occurs among long-term geographic isolates in similar habitats suggests that morphological divergence via drift may be negligible and/or that selection is acting to produce similar phenotypes in populations occupying similar habitats. Our results demonstrate that significant phenotypic divergence: (1) is not necessarily coupled with divergence in neutral molecular markers; and (2) can occur without geographic isolation in the presence of gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benkman, C.W., 1991. Predation, seed size partitioning and the evolution of body size in seed-eating finches. Evol. Ecol. 5: 118–127.

    Article  Google Scholar 

  • Boag, P.T. & A. van Noordwijk, 1987. Quantitative genetics, pp. 45–78 in Avian Genetics: A Population and Ecological Approach, edited by F. Cooke & P.A. Buckley. Academic Press, New York.

    Chapter  Google Scholar 

  • Chapin, J.P., 1924. Size-variation in Pyrenestes, a genus of weaver-finch. Am. Mus. Nat. Hist. Bull. 49: 415–441 Size-variation in Pyrenestes, a genus of weaver-finch. Am. Mus. Nat. Hist. Bull. 49: 415–441.

    Google Scholar 

  • Chapin, J.P., 1954. The birds of the Belgian Congo. Am. Mus. Nat. Hist. 75, New York.

    Google Scholar 

  • Charlesworth, B., 1994. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Dieckmann, U. & M. Doebeli, 1999. On the origin of species by sympatric speciation. Nature 400: 354–357.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, S.V. & P. Beerli, 2000. Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54: 1839–1854.

    CAS  PubMed  Google Scholar 

  • Endler, J.A., 1982a. Problems in distinguishing historical from ecological factors in biogeography. Am. Zool. 22: 441–452.

    Google Scholar 

  • Endler, J.A., 1982b. Pleistocene forest refuges: fact or fancy, in Biological Diversification in the Tropics, edited by G.T. Prance. Columbia University Press, New York.

    Google Scholar 

  • FjeldsÃ¥, J. & J.C. Lovett. 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiv. Cons. 6: 325–346.

    Article  Google Scholar 

  • Fridolfsson, A.K. & H. Ellegren, 1999. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30: 116–121.

    Article  Google Scholar 

  • Funk, D.J., 1998. Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52: 1744 1744–1759.

    Article  Google Scholar 

  • Gans, C., 1975. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15: 455–467.

    Google Scholar 

  • Garcia-Moreno, J. & J. FjeldsÃ¥, 2000. Chronology and mode of speciation in the Andean avifauna. Bonn. Zool. Monogr. 46: 25–46.

    Google Scholar 

  • Garcia-Paris, M., D.A. Good, G. Parra-Olea & D.B. Wake, 2000. Biodiversity of Costa Rican salamanders: implications of high levels of genetic differentiation and phylogeographic structure for species formation. Proc. Natl. Acad. Sci. 97: 1640–1647.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavrilets, S., 2000. Waiting time to parapatric speciation. Proc. R. Soc. Lond. B 267: 2483–2492.

    Article  CAS  Google Scholar 

  • Gavrilets, S., H. Li & M.D. Vose, 2000. Patterns of parapatric speciation. Evolution 54: 1126–1134.

    CAS  PubMed  Google Scholar 

  • Grant, P.R., 1986. Ecology and Evolution of Darwin’s Finches. Princeton University Press, Princeton.

    Google Scholar 

  • Haffer, J., 1969. Speciation in Amazonian forest birds. Science 165: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Haffer, J., 1974. Avian speciation in tropical South America. Publ. Nutt. Ornithol. Club 14, Cambridge MA.

    Google Scholar 

  • Haffer, J., 1993. Time’s cycle and time’s arrow in the history of Amazonia. Biogeographica 69: 15–45.

    Google Scholar 

  • Haffer, J., 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiv. Cons. 6: 451–477.

    Article  Google Scholar 

  • Hendry, A.P., 2001. Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica 112-113: 515–534.

    Article  CAS  PubMed  Google Scholar 

  • Hendry, A.P., J.K. Wenburg, P. Bentzen, E.C. Volk & T.P. Quinn, 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290: 516–518.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K.P. & M.D. Sorenson, 1998. Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini). Mol. Phylogen. Evol. 10: 82–94.

    Article  CAS  Google Scholar 

  • Keith, S., E.K. Urban & C.H. Fry, 1992. The Birds of Africa. Academic Press, New York.

    Google Scholar 

  • Kondrashov, A.S. & FA. Kondrashov, 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Korol, A., E. Rashkovetsky, K. Iliadi, P. Michalak, Y. Ronin & E. Nevo, 2000. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at ‘Evolution Canyon’. Proc. Natl. Acad. Sci. 97: 12637–12642.

    Article  PubMed Central  PubMed  Google Scholar 

  • Longman, K.A. & J. Jenik, 1992. Forest-savanna boundaries: general considerations, pp. 3–20 in Nature and Dynamics of Forest-Savanna Boundaries, edited by P.A. Furley, J. Proctor & J.A. Ratter. Chapman and Hall, New York.

    Google Scholar 

  • Losos, J.B., T.W. Schoener, K.I. Warheit & D. Creer, 2001. Experimental studies of adaptive differentiation in Bahamian Anolis lizards. Genetica 112-113: 399–415.

    Article  CAS  PubMed  Google Scholar 

  • Louette, M., 1981. The birds of Cameroon. An annotated checklist. Verhandelingen van de Koninklijke Academie voor Wetenschap-pen, Letteren en Schone Kunsten van Belgie. Klasse der Weten-schappen, Brussels.

    Google Scholar 

  • Lovette, I.J. & E. Bermingham, 1999. Explosive speciation in the New World Dendroica warblers. Proc. R. Soc. Lond. B 266: 1629–1636.

    Article  Google Scholar 

  • Lu, G. & L. Bernatchez, 1999. Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53: 1491–1505.

    Article  Google Scholar 

  • Lynch, M. & K. Ritland, 1999. Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753–1766.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maynard Smith, J., 1966. Sympatric speciation. Am. Nat. 100: 637–650.

    Article  Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge.

    Google Scholar 

  • Mayr, E. & R.J. O’Hara, 1986. The biogeographical evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40: 55–67.

    Article  Google Scholar 

  • McMillan, W.O., C.D. Jiggins & J. Mallet, 1997. What initiates speciation in passion-vine butterflies? Proc. Natl. Acad. Sci. 94: 8628–8633.

    Article  CAS  Google Scholar 

  • Moritz, C., L. Joseph, C. Cunningham & C.J. Schneider, 1997. Molecular perspectives on historical fragmentation of Australian tropical and subtropical rainforest: implications for conservation, pp. 442–454 in Tropical Forest Remnants, edited by W. Laurance & R. Bierregard. University of Chicago Press, Chicago.

    Google Scholar 

  • Moritz, C., J.L. Patton, C.J. Schneider & T.B. Smith, 2000. Diversification of rainforest faunas: an integrated molecular approach. Ann. Rev. Ecol. Syst. 31: 533–563.

    Article  Google Scholar 

  • Orr, M.R. & T.B. Smith, 1998. Ecology and speciation. TREE 13: 502–506.

    CAS  PubMed  Google Scholar 

  • Peterson, A.T., J. Soberon & V. Sanchez-Cordero, 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267.

    Article  CAS  PubMed  Google Scholar 

  • Podos, J., 2001. Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409: 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Prance, G.T. (ed.), 1982. Biological Diversification in the Tropics. Columbia University Press, New York.

    Google Scholar 

  • Price, T., 1998. Sexual selection and natural selection in bird speciation. Phil. Trans. R. Soc. Lond. B 353: 251–260.

    Article  Google Scholar 

  • Reznick, D.N. & C.K. Ghalambor, 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112-113: 183–198.

    Article  CAS  PubMed  Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Article  CAS  PubMed  Google Scholar 

  • Rice, R.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47: 1637–1653.

    Article  Google Scholar 

  • Roy, M., 1997. Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc. R. Soc. Lond. B 264: 1337–1344.

    Article  Google Scholar 

  • Rundle, H.D., L. Nagel. J.W. Boughman & D. Schlüter, 2000. Natural selection and parallel speciation in sticklebacks. Science 287: 306–308.

    Article  CAS  PubMed  Google Scholar 

  • Schluter, D., 1998. Ecological causes of speciation, pp. 114–129 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D. & J.N.M. Smith, 1986a. Natural selection on beak and body size in the song sparrow. Evolution 40: 221–231.

    Article  Google Scholar 

  • Schluter, D. & J.N.M. Smith, 1986b. Genetic and phenotypic correlations in a natural population of song sparrows. Biol. J. Linn. Soc. 29: 23–36.

    Article  Google Scholar 

  • Schneider, C., 2000. Natural Selection and Speciation. Proc. Natl. Acad. Sci. 97: 12398–12399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider, C.J. & C. Moritz, 1999. Refugial isolation and evolution in Australia’s wet tropics rainforest. Proc. Roy. Soc. Lond. B 266: 191–196.

    Article  Google Scholar 

  • Schneider, C., T.B. Smith, B. Larison & C. Moritz, 1999. A test of alternative models of diversification in tropical rainforests: ecological gradients versus rainforest refugia. Proc. Natl. Acad. Sci. 94: 13869–13873.

    Article  Google Scholar 

  • Schneider, C.J., M. Cunningham & C. Moritz, 1998. Comparative phylogeography and the history of vertebrates endemic to the Wet Tropics rainforest of Australia. Mol. Ecol. 7: 487–498.

    Article  Google Scholar 

  • Shields, G.F. & A.C. Wilson. 1987. Calibration of mitochondrial DNA evolution in geese. J. Mol. Evol. 24: 212–217.

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn, H. & T.B. Smith, 2000. Does bill size polymorphism affect courtship song characteristics in the African finch Pyrenestes ostrinus? Biol. J. Linn. Soc. 71: 737–753.

    Article  Google Scholar 

  • Smith, T.B., 1987. Bill size polymorphism and intraspecific niche utilization in an African finch. Nature 329: 717–719.

    Article  Google Scholar 

  • Smith, T.B., 1990a. Natural selection on bill characters in the two bill morphs of the African finch Pyrenestes ostrinus. Evolution 44: 832–842.

    Article  Google Scholar 

  • Smith, T.B., 1990b. Patterns of morphological and geographic variation in trophic bill morphs of the African finch Pyrenestes. Biol. J. Linn. Soc. 41: 381–414.

    Article  Google Scholar 

  • Smith, T.B., 1990c. Resource use by bill morphs of an African finch: evidence for intraspecific competition. Ecology 71: 1246–1257.

    Article  Google Scholar 

  • Smith, T.B., 1991. Inter-and intra-specific diet overlap during lean times between Quelea erythrops and bill morphs of Pyrenestes ostrinus. Oikos 60: 76–82.

    Article  Google Scholar 

  • Smith, T.B., 1993. Disruptive selection and the genetic basis of bill size polymorphism in the African finch, Pyrenestes. Nature 363: 618–620.

    Article  Google Scholar 

  • Smith, T.B., 1997. Adaptive significance of the mega-billed form in the polymophic black-bellied seedcracker Pyrnestes ostrinus. Ibis 139: 382–387.

    Google Scholar 

  • Smith, T.B. & S. Skulason, 1996. Evolutionary significance of resource polymorphisms in fish, amphibians and birds. Ann. Rev. Ecol. Syst. 27: 111–133.

    Article  Google Scholar 

  • Smith, T.B. & D. Girman, 2000. Reaching new adaptive peaks: evolution of bill size polymorphism in a African finch, pp. 139–156 in Adaptive Genetic Variation in the Wild, edited by T. Mousseau, B. Sinervo & J. Endler. Oxford University Press. Oxford.

    Google Scholar 

  • Smith, T.B., R.K. Wayne, D.J. Girman & M.W. Bruford, 1997. A role for ecotones in generating rainforest biodiversity. Science 276: 1855–1857.

    Article  CAS  Google Scholar 

  • Stebbins, G.L., 1974. Flowering Plants, Evolution above the Species Level. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Thiollay, J.M., 1971. L’avifaune de la region de Lamto. Annales De L’Universite D’Abidjan, Ser. E. Ecologie IV: 1–132.

    Google Scholar 

  • Turton, S.M. & G. J. Sexton, 1996. Environmental gradients across four rainforest-open forest boundaries in northeastern Queensland. Aust. J. Ecol. 21: 245–254.

    Article  Google Scholar 

  • Wilson, A.C., R.L. Cann, S.M. Carr, M. George, U.B. Gyllensten, K.M. Helm-Bychowski, R.G. Higuchi, S.R. Palumbi, E.M. Prager, R.D. Sage & M. Stoneking, 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26: 375–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. P. Hendry M. T. Kinnison

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, T.B., Schneider, C.J., Holder, K. (2001). Refugial isolation versus ecological gradients. In: Hendry, A.P., Kinnison, M.T. (eds) Microevolution Rate, Pattern, Process. Contemporary Issues in Genetics and Evolution, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0585-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0585-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3889-8

  • Online ISBN: 978-94-010-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics