Skip to main content

On morphological clocks and paleophylogeography: Towards a timescale for Sorex hybrid zones

  • Chapter
Microevolution Rate, Pattern, Process

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 8))

Abstract

Phylogeography - the study of within-species phylogenetic and geographic divergence - has been primarily the domain of molecular evolutionists because molecular markers record population structure on smaller scales than do traditional morphological traits. But when geometric morphometrics are combined with distance-based phylogenetics molar shape divergence appears to record population-level phylogeny, a fact that allows extant and fossil populations to be combined in a single phylogeographic study. The European Sorex araneus complex - a genetically complicated group composed of multiple karyotypic races and species - illustrates the principle. The phylogeographic patterns revealed by molar shape broadly agree with scenarios based on molecular data and circumstantial evidence. Importantly, the inclusion of fossil samples of known age allows minimum divergence times to be inferred. Some races of S. araneus may have diverged more than 120,000 years ago, but others may have diverged less than 14,000. Supporting evidence that molar shape can be used to reconstruct phylogeographic relationships comes from strong correlations between molar shape distances and both phylogenetic divergence time and cytochrome b sequence divergence in datasets where these variables are known independently (fossil carnivorans from a well-constrained stratigraphic setting and shrew species of the genus Sorex, respectively). However, molar shape may have a ‘saturation point’ beyond which it is not applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avise, J.C., 1994. Molecular Markers, Natural History, and Evolution. Chapman and Hall, New York.

    Book  Google Scholar 

  • Avise, J.C., 2000. Phylogeography. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Bader, R.S., 1965. Heritability of dental characters in the house mouse. Evolution 19: 378–384.

    Article  Google Scholar 

  • Bailey R.C. & J. Byrnes. 1990. A new, old method for assessing measurement error in both univariate and multivariate morpho-metric studies. System. Zool. 39: 124–130.

    Article  Google Scholar 

  • Balloux, F., H. BrĂ¼nner, N. Lugon-Moulin, J. Hausser & J. Goudet, 2000. Microsatellites can be misleading: an empirical and simulation study. Evolution 54: 1414–1422.

    CAS  PubMed  Google Scholar 

  • Barnosky, A.D., 1993. Mosaic evolution at the population level in Microtus pennsylvanicus, pp. 24–59 in Morphological Changes in Quaternary Mammals of North America, edited by R.A. Martin & A.D. Barnosky. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Barton, N.H. & G.M. Hewitt, 1985. Analysis of hybrid zones. Ann. Rev. Ecol. System. 16: 113–148.

    Article  Google Scholar 

  • Bell, M.A., J.V. Baumgartner & E.C. Olson, 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11: 258–271.

    Google Scholar 

  • Bengtsson, B.O. & I. Frykman, 1990. Karyotype evolution: evidence from the common shrew (Sorex araneus L.). J. Evol. Biol. 3: 85–101.

    Article  Google Scholar 

  • Berg, H.C., 1993. Random Walks in Biology. Princeton University Press, Princeton. Expanded edn.

    Google Scholar 

  • Berry, R.J., 1977. Inheritance and Natural History. Collins, London.

    Google Scholar 

  • Bookstein, F.L., 1992. Morphometric Tools for Landmark Data: Geometry and Biology. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Churchfield, S.J., 1990. The Natural History of Shrews. Helm, London.

    Google Scholar 

  • Drummond, A. & A.G. Rodrigo, 2000. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial sample UPGMA. Mol. Biol. Evol. 17: 1807–1815.

    Article  CAS  PubMed  Google Scholar 

  • Fedyk, S., 1986. Genetic differentiation of Polish populations of Sorex araneus L. II: possibilities of gene flow between chromosome races. Bull. Polish Acad. Sci. Ser. Biol. 34: 161–172.

    Google Scholar 

  • Felsenstein, J., 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25: 471–492.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fitch, W.M. & E. Margoliash, 1967. Construction of phylogenetic trees. Science 155: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Ford, C.E., J.L. Hamerton & G.B. Sharman, 1957. Chromosome polymorphism in the common shrew. Nature 180: 392–393.

    Article  CAS  PubMed  Google Scholar 

  • Ford, C.E. & J.L. Hamerton, 1970. Chromosome polymorphism in the Common Shrew, Sorex araneus. Symp. Zool. Soc. London 26: 223–236.

    Google Scholar 

  • Fumagalli, L., J. Hausser, P. Taberlet, L. Gielly & D.T. Stewart, 1996. Phylogenetic structures of the Holarctic Sorex araneus group and its relationships with S. samniticus, as inferred from mitochondrial DNA sequences. Hereditas 125: 191–199.

    Article  Google Scholar 

  • Fumagalli, L., P. Taberlet, D.T. Stewart, L. Gielly, J. Hausser & P. Vogel, 1999. Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 11: 222–235.

    Article  CAS  PubMed  Google Scholar 

  • Gingerich, P.D., 1974. Size variability of teeth in living mammals and the diagnosis of closely related sympatric fossil species. J. Paleontol. 48: 895–903.

    Google Scholar 

  • Gingerich, P.D., 1993. Quantification and comparison of evolutionary rates. Am. J. Sci. 293-A: 453–478.

    Article  Google Scholar 

  • Gingerich, P.D., 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112-113: 127–144.

    Article  CAS  PubMed  Google Scholar 

  • Graham, R.W., E.L. Lundelius, M.A. Graham, E.K. Schroeder, R.S. Toomey, E. Anderson, A.D. Barnosky, J.A. Burns, C.S. Churcher, D.K. Grayson, R.D. Guthrie, C.R. Harington, G.T. Jefferson, L.D. Martin, H.G. McDonald, R.E. Morlan, H.A. Semken, S.D. Webb, L. Werdelin, L. & M.C. Wilson. 1996. Spatial response of mammals to late quaternary environmental fluctuations. Science 272: 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  • Hausser, J., 1994. The Sorex of the araneus-arcticm group (Mammalia: Soricidae): do they actually speciate? Carnegie Museum Natur. Hist. Spl. Publ. 18: 295–306.

    Google Scholar 

  • Hausser, J., F. Catzeflis, A. Meylan & P. Vogel. 1985. Speciation in the Sorex araneus complex (Mammalia, Insectivora). Acta Zool. Fenn. 170: 125–130.

    Google Scholar 

  • Hausser, J., L. Fumagalli & P. Taberlet, 1998. Mitochondrial DNA evolution in shrews, pp. 295–308 in Evolution of Shrews, edited by J.M. WĂ³jcik & M. Wolsan. Mammal Research Institute, Polish Academy of Sciences, Bialowieza.

    Google Scholar 

  • Hausser, J. & D. Jammot, 1974. Etude biomĂ©trique des mĂ¢choires chez les Sorex du groupe araneus en Europe continentale (Mammalia, Insectivora). Mammalia 38: 324–343

    Article  Google Scholar 

  • Hewitt, G.M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276.

    Google Scholar 

  • Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87–112.

    Article  Google Scholar 

  • Jernvall, J., 1995. Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zool. Fenn. 198: 1–61.

    Google Scholar 

  • Johnson, N.A. & A.H. Porter, 2001. Toward a new synthesis: population genetics and evolutionary developmental biology. Genetica 112-113:45–58.

    Article  CAS  PubMed  Google Scholar 

  • Keränen, S.V.E., T. Ă…berg, P. Kettunen, I. Thesleff, I. & J. Jernvall. 1998. Association of developmental regulatory genes with the development of different molar shapes in two species of rodent. Develop. Genes Evol. 208: 477–486.

    Article  Google Scholar 

  • Kinnison, M.T. & A.P. Hendry, 2001. The pace of modern life. II: from rates to pattern and process. Genetica 112-113: 145–164.

    Article  CAS  PubMed  Google Scholar 

  • Lister, A., 1995. Sea-levels and the evolution of island endemics: the dwarf red deer of Jersey. Geol. Soc. Spl. Publ. 96: 151–172.

    Article  Google Scholar 

  • MacLeod, N. & K.D. Rose, 1993. Inferring locomotor behavior in paleogene mammals via eigenshape analysis. Am. J. Sci. 293-A: 300–355.

    Article  Google Scholar 

  • Manly, B.F.J., 1986. Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Populat. Ecol. 28: 201–281.

    Article  Google Scholar 

  • Martin, R.A., 1993. Patterns of variation and speciation in quaternary rodents, pp. 226–280 in Morphological Change in Quaternary Mammals of North America, edited by R.A. Martin & A.D. Barnosky. Cambridge University Press, Cambridge, England.

    Chapter  Google Scholar 

  • Mercer, S.J. & J.B. Searle, 1991. Preliminary analysis of a contact zone between karyotypic races of the common shrew (Sorex araneus) in Scotland. Memoir. Soc. Vaud. Sci. Naturell. 19: 73–78.

    Google Scholar 

  • Mercer, S.J., J.B. Searle & B.M.N. Wallace, 1991. Meiotic studies of karyotypically homogenous and heterozygous male common shrews. Memoir. Soci. Vaud. Sci. Naturell. 19: 33–43.

    Google Scholar 

  • Mousseau, T.A. & D.A. Roff, 1986. Natural selection and the heritability of fitness components. Heredity 59: 181–197.

    Article  Google Scholar 

  • Neet C. & J. Hausser, 1989. Chromosomal rearrangements, speciation and reproductive isolation: the example of two karyotypic species of the genus Sorex. J. Evol. Biol. 2: 373–378.

    Article  Google Scholar 

  • Novacek, M.J., 1992. Mammalian phylogeny: shaking the tree. Nature 356: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Ohdachi, S., R. Masuda, H. Abe, J. Adachi, N.E. Dokuchaev, V. Haukisalmi & M.C. Yoshida, 1997. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Sci. 14: 527–532.

    Article  Google Scholar 

  • Patton, J.L. & M.F. Smith, 1989. Population structure and the genetic and morphological divergence among pocket gopher species (genus Thomomys), pp. 284–304 in Speciation and its Consequences, edited by D. Otte & J.A. Endler. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Pergams, O.R.W. & M.V. Ashley, 2001. Microevolution in island rodents. Genetica 112-113: 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Polly, P.D., 1997. Ancestry and species definition in paleontology: a stratocladistic analysis of Viverravidae (Carnivora, Mammalia) from Wyoming. Contributions from the Museum of Paleontology, University of Michigan 30: 1–53.

    Google Scholar 

  • Polly, P.D., 1998. Variability, selection, and constraints: development and evolution in viverravid (Carnivora, Mammalia) molar morphology. Paleobiology 24: 409–429.

    Google Scholar 

  • Polly, P.D., 2001. Phylogenetic Tests for Differences in Shape and the Importance of Divergence Times: Eldredge’s Enigma Explored, in Morphology, Shape, and Phylogenetics, edited by N. MacLeod & P. Forey. Taylor and Francis, London.

    Google Scholar 

  • Prager, E.M. & A.C. Wilson, 1978. Construction of phylogenetic trees for proteins and nucleic acids: empirical evaluation of alternative matrix methods. J. Mol. Evol. 11: 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A., 2000. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16: 395–399.

    Article  CAS  PubMed  Google Scholar 

  • Repenning, C.A., 1967. Subfamilies and genera of the Soricidae. U.S. Geol. Surv. Profess. Paper 565: 1–74.

    Google Scholar 

  • Rohlf, F.J., 1998. tpsSmall: Is shape variation small? Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York.

    Google Scholar 

  • Rohlf, F.J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces. J. Classif. 16: 197–223.

    Article  Google Scholar 

  • Searle, J.B., 1984. Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Systemat. Zool. 33: 184–194.

    Article  Google Scholar 

  • Searle, J.B., 1986. Meiotic studies of Robertsonian heterozygotes from natural populations of the common shrew, Sorex araneus L. Cytogenet. Cell Genet. 41: 154–162.

    Article  CAS  PubMed  Google Scholar 

  • Searle, J.B. & P.J. Wilkinson, 1987. Karyotypic variation in the common shrew (Sorex araneus) in Britain-a ‘Celtic Fringe’. Heredity 59: 345–351.

    Article  Google Scholar 

  • Searle, J.B. & J.M. WĂ³jcik, 1998. Chromosomal evolution: the case of Sorex araneus, pp. 217–268 in Evolution of Shrews, edited by J.M. WĂ³jcik & M. Wolsan. Mammal Research Institute, Polish Academy of Sciences, Bialowieza.

    Google Scholar 

  • Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Thorpe, R.S., 1996. The use of DNA divergence to help determine the correlates of evolution of morphological characters. Evolution 50: 524–531.

    Article  Google Scholar 

  • Thorpe, R.S., A. Malhotra, H. Black, J.C. Daltry & W. WĂ¼ster, 1995. Relating geographic pattern to phylogenetic process. Philos. Transact. Royal Soc. London Ser. B 349: 61–68.

    Article  Google Scholar 

  • Yalden, D.W., 1982. When did the mammal fauna of the British Isles arrive? Mamm. Rev. 12: 1–57.

    Google Scholar 

  • Ziegler, R., 1995. Pleistozäne Säugetierfaunen von Genkingen bei Reutlingen (Baden-WĂ¼rttemberg). Stutt. Beit. Naturk. Ser. B, 234: 1–43.

    Google Scholar 

  • Zima, J., S. Fedyk, K. Fredga, J. Hausser, A. Mishta, J.B. Searle, V.T. Volobouev & J.M. WĂ³jcik, 1996. The list of the chromosome races of the common shrew (Sorex araneus). Hereditas 125: 97–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. P. Hendry M. T. Kinnison

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polly, P.D. (2001). On morphological clocks and paleophylogeography: Towards a timescale for Sorex hybrid zones. In: Hendry, A.P., Kinnison, M.T. (eds) Microevolution Rate, Pattern, Process. Contemporary Issues in Genetics and Evolution, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0585-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0585-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3889-8

  • Online ISBN: 978-94-010-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics