Skip to main content

Rapid evolution of wing size clines in Drosophila subobscura

  • Chapter
Microevolution Rate, Pattern, Process

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 8))

Abstract

Parallel latitudinal clines across species and continents provide dramatic evidence of the efficacy of natural selec- tion, however little is known about the dynamics involved in cline formation. For example, several drosophilids and other ectotherms increase in body and wing size at higher latitudes. Here we compare evolution in an ancestral European and a recently introduced (North America) cline in wing size and shape in Drosophila subobscura. We show that clinal variation in wing size, spanning more than 15 degrees of latitude, has evolved in less than two decades. In females from Europe and North America, the clines are statistically indistinguishable however the cline for North American males is significantly shallower than that for European males. We document that while overall patterns of wing size are similar on two continents, the European cline is obtained largely through changing the proximal portion of the wing, whereas the North American cline is largely in the distal portion. We use data from sites collected in 1986/1988 (Pegueroles et al. 1995) and our 1997 collections to compare synchronic (divergence between contemporary populations that share a common ancestor) and allochronic (changes over time within a population) estimates of the rates of evolution. We find that, for these populations, allochronically estimated evolutionary rates within a single population are over 0.02 haldanes (2800 darwins), a value similar in magnitude to the synchronic estimates from the extremes of the cline. This paper represents an expanded analysis of data partially presented in Huey et al. (2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alicchio, R. & D.L. Palenzona, 1971. Changes of sexual dimorphism values in Drosophila melanogaster. Boll. Zool. 38: 75–84.

    Article  Google Scholar 

  • Anderson, W.W., 1966. Genetic divergence in M. Vetukhiv’s experimental populations in Drosophila pseudoobscura. 3. Divergence in body size. Gen. Res. 7: 255–266.

    Article  Google Scholar 

  • Anderson, W.W., 1973. Genetic divergence in body size among experimental populations of Drosophila pseudoobscura kept at different temperatures. Evolution 27: 278–284.

    Article  Google Scholar 

  • Ayala, F. J., L. Serra & A. Prevosti. 1989. A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome 31: 246–255.

    Article  Google Scholar 

  • Baker, H.G. & G.L. Stebbins, 1965. The Genetics of Colonizing Species. Academic Press, New York.

    Google Scholar 

  • Beckenbach, A.T. & A. Prevosti, 1986. Colonization of North America by the European species, Drosophila subobscura and D. ambigua. Am. Midl. Nat. 115: 10–18.

    Article  Google Scholar 

  • Berven, K.A., 1982. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. 1. An experimental analysis of life history traits. Evolution 36: 962–983.

    Article  Google Scholar 

  • Boag, P.T. & P.R. Grant, 1981. Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galápagos. Science 214: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Bock, I.R. & P.A. Parsons, 1981. Species of Australia and New Zealand, pp. 291–308 in Genetics and Biology of Drosophila. Vol. 3a, edited by M. Ashburner, H.L. Carson & J.N. Thompson. Academic Press, New York.

    Google Scholar 

  • Brncic, D., 1994. Colonization of Chile by Drosophila subobscura and its consequences, pp. 154–169 in Genetics of Natural Populations: The Continuing Importance of Theodosius Dobzhansky, edited by L. Levine. Columbia University Press, New York.

    Google Scholar 

  • Brncic, D., A. Prevosti, M. Budnik, M. Monclus & J. Ocaña, 1981. Colonization of Drosophila subobscura in Chile. I. First population and cytogenetic studies. Genetica 56: 3–9.

    Article  Google Scholar 

  • Bryant, E.H., 1977. Morphological adaptation of the housefly, Musca domestica L., in the United States. Evolution 31: 580–596.

    Article  Google Scholar 

  • Budnik, M., L. Cifuentes & D. Brncic, 1991. Quantitative analysis of genetic differentiation among European and Chilean strains of Drosophila subobscura. Heredity 67: 29–33.

    Article  PubMed  Google Scholar 

  • Capy, P., E. Pla & J.R. David, 1993. Phenotypic and genetic variability of morphological traits in natural populations of Drosophila melanogaster and Drosophila simulans. 1. Geographic variations. Genet. Sel. Evol. 25: 517–536.

    Article  PubMed Central  Google Scholar 

  • Carroll, S.P., H. Dingle & S.P. Klassen, 1997. Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug. Evolution 51:1182–1188.

    Article  Google Scholar 

  • Cavicchi, S., G. Giorgi & M. Mochi, 1978. Investigation on early divergence between populations of Drosophila melanogaster kept at different temperatures. Genetica 48: 81–87.

    Article  Google Scholar 

  • Cavicchi, S., D. Guerra, G. Giorgi & C. Pezzoli, 1985. Temperature-related divergence in experimental populations of Drosophila melanogaster. I. Genetic and developmental basis of wing size and shape variation. Genetics 109: 665–689.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constanti, M., M. Pascual, G. RibĂł & A. Prevosti, 1986. Sexual isolation between populations of Drosophila subobscura. I. European strains. GenĂ©t. IbĂ©ria 38: 213–230.

    Google Scholar 

  • Cowley, D.E., W.R. Atchley & J.J. Rutledge, 1986. Quantitative genetics of Drosophila melanogaster. I. Sexual dimorphism in genetic parameters for wing traits. Genetics 114: 549–566.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coyne, J. A. & E. Beecham, 1987. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics 117: 727–737.

    CAS  PubMed Central  PubMed  Google Scholar 

  • David, J.R. & C. Bocquet, 1975. Evolution in a cosmopolitan species: genetic latitudinal clines in Drosophila melanogaster wild populations. Experientia 31: 164–166.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, M.H., F. Lehmann & S.P. Sane, 1999. Wing rotation and the aerodynamic basis of flight. Science 284: 1954–1960.

    Article  CAS  PubMed  Google Scholar 

  • Endler, J.A., 1977. Geographic Variation, Speciation, and Clines. Princeton University Press, Princeton.

    Google Scholar 

  • Fisher, R.A., 1958. The Genetical Theory of Natural Selection. Dover, New York.

    Google Scholar 

  • Frankham, R., 1968. Sex and selection for a quantitative character in Drosophila. I. Single-sex selection. Aust. J. Biol. Sci. 21: 1215–1223.

    CAS  PubMed  Google Scholar 

  • Gibbs, H.L. & P.R. Grant, 1987. Oscillating selection on Darwin’s finches. Nature 327: 511–513.

    Article  Google Scholar 

  • Gilchrist, A.S., R.B.R. Azevedo, L. Partridge & P. O’Higgins, 2000. Adaptation and constraint in the evolution of Drosophila melanogaster wing shape. Evol. Devel. 2: 114–124.

    Article  CAS  Google Scholar 

  • Grant, P.R. & B.R. Grant, 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:241–251.

    Article  Google Scholar 

  • Haidane, J.B.S., 1948. The theory of a cline. J. Genet. 48: 277–284.

    Article  Google Scholar 

  • Hendry, A.P. & M.T. Kinnison, 1999. Perspective: the pace of modem life: measuring rates of contemporary microevolution. Evolution 53: 1637–1653.

    Article  Google Scholar 

  • Huey, R.B., G.W. Gilchrist, M.L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309.

    Article  CAS  PubMed  Google Scholar 

  • Huey, R.B., L. Partridge & K. Fowler. 1991. Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45: 751–756.

    Article  Google Scholar 

  • Huxley. J.S., 1939. Clines: an auxiliary method in taxonomy. Bijdr. Dierk. 27: 491–520.

    Google Scholar 

  • Imasheva, A.G., O.A. Bubli & O.E. Lazebny, 1994. Variation in wing length in Eurasian natural populations of Drosophila melanogaster. Heredity 72: 508–514.

    Article  PubMed  Google Scholar 

  • lames. A.C., R.B.R. Azevedo & L. Partridge, 1995. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 140: 659–666.

    Google Scholar 

  • James. A.C. & L. Partridge. 1995. Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. J. Evol. Biol. 8: 315–330.

    Article  Google Scholar 

  • Johnston. R.F. & R.K. Selander. 1964. House sparrows: rapid evolution of races in North America. Science 144: 548–550.

    Article  CAS  PubMed  Google Scholar 

  • Kari. J.S. & R.B. Huey, 2000. Size and seasonal temperature in free-ranging Drosophila subohscura. J. Therm. Biol. 25: 267–272.

    Article  PubMed  Google Scholar 

  • Kinnison, M.T. & A.P. Hendry. 2001. The pace of modern life. II. from rates to pattern and process. Genetica 112-113: 145–164.

    Article  CAS  PubMed  Google Scholar 

  • Krimbas. C.B. & M. Loukas. 1980. The inversion polymorphism of Drosophila subobscura. Evol. Biol. 12: 163–234.

    Google Scholar 

  • Krimbas, C.B. & J.R. Powell, 1992. The inversion polymorphism of Drosophila subobscura. pp. 127–220 in Drosophila Inversion Polymorphism, edited by C.B. Krimbas. CRC Press, Boca Raton, F.L.

    Google Scholar 

  • Lande. R.. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34: 292–305.

    Article  Google Scholar 

  • Long. A.D. & R.S. Singh, 1995. Molecules versus morphology: the detection of selection acting on morphological characters along a cline in Drosophila melanogaster. Heredity 74: 569–581.

    Article  PubMed  Google Scholar 

  • Lonsdale, D.J. & J.S. Levinton, 1985. Latitudinal differentiation in copepod growth: an adaptation to temperature. Ecology 66: 1397–1407.

    Article  Google Scholar 

  • Menozzi, P. & C.B. Krimbas, 1992. The inversion polymorphism of D. subobscura revisited: synthetic maps of gene arrangement frequencies and their interpretation. J. Evol. Biol. 5: 625–641.

    Article  Google Scholar 

  • Misra, R.K. & E.C.R. Reeve, 1964. Clines in body dimensions in populations of Drosophila subobscura. Gen. Res. 5: 240–256.

    Article  Google Scholar 

  • Noor, M.A., M. Pascual & K.R. Smith, 2000. Genetic variation in the spread of Drosophila subobscura from a nonequilibrium population. Evolution 54: 696–703.

    CAS  PubMed  Google Scholar 

  • Noor, M.A.F., 1998. Diurnal activity patterns of Drosophila subobscura and D. pseudoobscura in sympatic populations. Am. Midl. Nat. 140: 34–41.

    Article  Google Scholar 

  • Noor, M.A.F., J.R. Wheatley, K.A. Wetterstrand & H. Akashi, 1998. Western North America obscura-group Drosophila collection data, summer 1997. Dros. Info. Serv. 81: 136–137.

    Google Scholar 

  • Parsons, P.A., 1983. The Evolutionary Biology of Colonizing Species. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Partridge, L., B. Barrie, K. Fowler & V. French, 1994. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48: 1269–1276.

    Article  Google Scholar 

  • Partridge, L. & V. French, 1996. Thermal evolution of ectotherm body size: why get big in the cold?, pp. 265–292 in Animals and Temperature: Phenotypic and Evolutionary Adaptation, edited by I.A. Johnston & A.F. Bennett. Cambridge University Press, Cambridge, U.K.

    Chapter  Google Scholar 

  • Pegueroles, G., M. Papaceit, A. Quintana, A. GuillĂ©n, A. Prevosti & L. Serra, 1995. An experimental study of evolution in progress: clines for quantitative traits in colonizing and Palearctic populations of Drosophila. Evol. Ecol. 9: 453–465.

    Article  Google Scholar 

  • Pfriem, P., 1983. Latitudinal variation in wing size in Drosophila subobscura and its dependence on polygenes of chromosome O. Genetica 61: 221–232.

    Article  Google Scholar 

  • Prevosti, A., 1955. Geographic variability in quantitative traits in populations of Drosophila subobscura. Cold Spring Harbor Symp. Quant. Biol. 20: 294–298.

    Article  CAS  PubMed  Google Scholar 

  • Prevosti, A., G, RibĂł, L. Serra, M. Aguade, J. Balanyá, M. Mon-clus & F. Mestres, 1988. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of inversion-inversion polymorphism. Proc. Natl. Acad. Sci. USA 85: 5597–5600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prevosti, A., L. Serra, M. AguadĂ©, G. RibĂł, F. Mestres & J. Bal-anyá, 1989. Colonization and establishment of the Palearctic species Drosophila subobscura in North and South America, pp. 114–129 in Evolutionary Biology of Transient and Unstable Populations, edited by A. Fontdevila. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Prevosti, A., L. Serra, C. Segarra, M. Aguade, G. Ribo & M. Monclus, 1990. Clines of chromosomal arrangements of Drosophila subobscura in South America evolve closer to Old World patterns. Evolution 44: 218–221.

    Article  Google Scholar 

  • Reed, S.C., C.M. Williams & L.E. Chadwick. 1942. Frequency of wingbeat as a character for separating species races and geographic varieties of Drosophila. Genetics 27: 349–361.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reeve, J.P. & D.J. Fairbairn, 1996. Sexual size dimorphism as a correlated response to selection on body size: an empirical test of the quantitative genetic model. Evolution 50: 1927–1938.

    Article  Google Scholar 

  • Reznick, D.N., H. Bryga & J.A. Endler, 1990. Experimentally induced life-history evolution in a natural population. Nature 346: 357–359.

    Article  Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Article  CAS  PubMed  Google Scholar 

  • Riha, V.F. & K.A. Berven, 1991. An analysis of latitudinal variation in the larval development of the wood frog (Rana sylvatica). Copeia 1991:209–221.

    Article  Google Scholar 

  • Robertson, F.W. & E. Reeve, 1952. Studies of quantitative inheritance. I. The effects of selection of wing and thorax length in Drosophila melanogaster. J. Gen. 50: 414–448.

    Article  Google Scholar 

  • Sokoloff, A., 1966. Morphological variation in natural and experimental populations of Drosophila pseudoobscura and Drosophila persimilis. Evolution 20: 49–71.

    Article  Google Scholar 

  • Stalker, H.D., 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics 95:211–223.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stalker, H.D. & H.L. Carson, 1947. Morphological variation in natural populations of Drosophila robusta Sturtevant. Evolution 1: 237–248.

    Article  Google Scholar 

  • Stalker, H.D. & H.L. Carson, 1948. An altitudinal transect of Drosophila robusta Sturtevant. Evolution 2: 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Stalker, H.D. & H.L. Carson, 1949. Seasonal variation in the morphology of Drosophila robusta Sturtevant. Evolution 3: 330–343.

    Article  CAS  PubMed  Google Scholar 

  • Tantawy, A.O., 1964. Studies on natural populations of Drosophila. III. Morphological and genetic differences of wing length in Drosophila melanogaster and D. simulans in relation to season. Evolution 18: 560–570.

    Article  Google Scholar 

  • van’t Land, J., P. van Putten, H. Villarroel, A. Kamping & W. van Delden, 1995. Latitudinal variation in wing length and allele frequencies for Adh and α-Gpdh in populations of Drosophila melanogaster from Ecuador and Chile. Dros. Info. Serv. 76: 156.

    Google Scholar 

  • van der Have, T.M. & G. de Jong, 1996. Adult size in ectotherms: temperature effects on growth and differentiation. J. Theor. Biol. 183: 329–340.

    Article  Google Scholar 

  • Zwaan, B., R.B.R. Azevedo, A.C. James. J. van’t Land & L. Partridge, 2000. Cellular basis of wing size variation in Drosophila melanogaster: a comparison of latitudinal clines on two continents. Heredity 84: 338–347.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. P. Hendry M. T. Kinnison

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilchrist, G.W., Huey, R.B., Serra, L. (2001). Rapid evolution of wing size clines in Drosophila subobscura . In: Hendry, A.P., Kinnison, M.T. (eds) Microevolution Rate, Pattern, Process. Contemporary Issues in Genetics and Evolution, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0585-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0585-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3889-8

  • Online ISBN: 978-94-010-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics