Photobiology pp 153-179 | Cite as

The Photochemical Reactions in Biological Light Perception and Regulation

  • Lars Olof Björn



Many photochemical reactions involved in the sensing of and regulation by light and ultraviolet radiation by organisms consist of cis-trans (and trans-cis) isomerisations. We shall start with this class of photosensors, and then go on to other mechanisms. There are many more known and unknown light-sensing molecular systems than those briefly described below, but (except for the first one) I have tried to concentrate on those more widespread. As examples of light-sensing pigments with a very limited distribution, one can mention stentorin and blepharismin of certain ciliates (Lenci et al. 2001).


Retinal Ganglion Cell Action Spectrum Chromatic Adaptation Antenna Pigment Urocanic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assmann, S.M. & Wang, X.-Q. (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opinion Plant Biol., 4,421-428.CrossRefGoogle Scholar
  2. Ballaré, C.L., Barnes, P.W. & Flint, S.D. (1995). Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. I. The photoreceptor. Physiol. Plant., 93,584-592.CrossRefGoogle Scholar
  3. Ballario, P. & Macino, G. (1997). White-collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol, 5,458-462.PubMedCrossRefGoogle Scholar
  4. Barinaga, M. (2002). How the brain's clock gets daily enlightenment. Science, 295, 955-957.PubMedCrossRefGoogle Scholar
  5. Beale, S.I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis Res. 60,43-73.CrossRefGoogle Scholar
  6. Beggs, C.J. & Wellmann, E. (1985). Analysis of light-controlled anthocyanin formation in coleoptiles of Zea mays L.: The role of UV-B, blue, red and far-red light. Photochem. Photobiol., 41, 481-486.CrossRefGoogle Scholar
  7. Beggs, C.J. & Wellmann, E. (1994). Photocontrol of flavonoid synthesis. In Kendrick, R.E. & Kronenberg, G.H.M. (eds) Photomorphogenesis in plants, 2nd ed., pp. 733-751. Dordrecht: Kluwer Academic Publishers.Google Scholar
  8. Berson, D.M., Dunn, F.A. & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073.PubMedCrossRefGoogle Scholar
  9. Bhoo, S.-H., Davis, S.D., Walker, J., Karniol, B. & Vierstra, R.D. (2001). Bacteriophytochromes are photochromic histidine kinasis using a biliverdin chromophore. Nature, 414, 776-779.PubMedCrossRefGoogle Scholar
  10. Björn, G.S. (1980). Photoreversibly photochromic pigments from blue-green algae. Diss. Lund University. LUNBDS/(NBFB-1009/l-28/(1980).Google Scholar
  11. Björn, G.S. & Björn, L.O. (1978). Action spectra for conversions of phytochrome c from Nostoc muscorum. Physiol. Plant., 43, 195-200.CrossRefGoogle Scholar
  12. Björn, L.O. (1970). Photoreversibly photochromic pigments in organisms: properties and role in biological light perception. Quart. Revs Biophys., 12,1-23.CrossRefGoogle Scholar
  13. Björn, L.O. (1984). Light-induced linear dichroism in photoreversibly photochromic sensor pigments. - V. Reinterpretation of the experiments on in vivo action dichroism of phytochrome. Physiol. Plant, 60, 369-372.CrossRefGoogle Scholar
  14. Björn, L.O. (1999). UV-B effects: Receptors and targets. In Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., & Govindjee (eds) Concepts in photobiology: Photosynthesis and photomorphogenesis (pp.821-832). New Delhi: Narosa Publishing House.Google Scholar
  15. Boylan, M.T. & Quail, P. H. (1996). Are the phytochromes protein kinases? Protoplasma 195,12-17.CrossRefGoogle Scholar
  16. Briggs, W.R., Beck, C.F., Cashmore, A.R. et al . (17 authors) (2001). The phototropin family of photoreceptors. Plant Cell, 13,993-991.PubMedGoogle Scholar
  17. Brosché, M. 2001. Deconstruction of a plant UV-B stress response. Diss. Göteborg University. pp. 60 . ISBN 91-628-4606-X.Google Scholar
  18. Christie, J.M. & Briggs, W.R. (2001). Blue light sensing in higher plants. J. Biol. Chem., 276, 11457-11460.PubMedCrossRefGoogle Scholar
  19. Crosson, S. & Moffat, K. (2001). structure of a flavin-binding plant photoreceptor domain: Insights into light mediated signal transduction. Proc. Natl Acad. Sci. USA, 98,2995-3000.PubMedCrossRefGoogle Scholar
  20. Davis, S.J., Vener, A.V. & Vierstra, R.D. (1999). Bacteriophytochromes: Photochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 286, 2517-2520.PubMedCrossRefGoogle Scholar
  21. Diakoff, S. & Scheibe, J. (1973). Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol., 57,382-385.CrossRefGoogle Scholar
  22. Etzold, H. (1965). Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta, 64,254-280.CrossRefGoogle Scholar
  23. Folta, K.M. & Spalding, E.P. (2001). Unexpected roles for cryptochrome2 and phototropin revealed by high-resolution analysis of blue ligh-mediated hypocotyl growth inhibition. Plant J., 26,471-478.PubMedCrossRefGoogle Scholar
  24. Foster, K.W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T. & Nakashini, K. (1984). A rhodopsin is the functioning photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature, 311, 756-759.PubMedCrossRefGoogle Scholar
  25. Frohnmeyer, H., Bowler, C. & Schäfer, E. (1997). Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplasts. J. Exp. Bot. 48, 739-750.CrossRefGoogle Scholar
  26. Frohnmeyer, H., Bowler, C, Zhu, J.-K., Yamagata, H., Schäfer, E. & Chua, N.-H. (1998). different roles for calcium and calmodulin in phytochrome- and UV-regulated expression of chalcone synthase.Plant J., 13,763-77.CrossRefGoogle Scholar
  27. Frohnmeyer, H., Loyall, L., Blatt, M.R. & Grabov, A. (1999). Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+and stimulates gene expression in transgenic parsley cell cultures. Plant J., 20,109-117.PubMedCrossRefGoogle Scholar
  28. Fujita, Y. & Hattori, A. (1962). Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Plant Cell Physiol. 3,209-220.Google Scholar
  29. Galland, P. (2001). Phototropism in Phycornyces.. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 621-657). Amsterdam: Elsevier. ISBN 0-444-50706-X.Google Scholar
  30. Genick, U.K., Borgstrahl, G.E.O., Kingman, N., Ren, Z., Pradervand, C., Burke, P.M., Srajer, V., Teng, T.-Y., Schildkamp, W., McRee, D.E., Moffat, K. & Getzoff, E.D. (1997). Structure of a protein cycle intermediate by millisecond time-resolved crystallography. Science, 275, 1471-1475.PubMedCrossRefGoogle Scholar
  31. Genick, U.K., Soltis, S.M., Kuhn, P., Canestrelli, I.L. & Getzoff, E.D. (1998). Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature, 392, 206-209.PubMedCrossRefGoogle Scholar
  32. Gilroy, S. & Trewavas, A. (2001). Signal processing and transduction in plant cells: The end of a beginning? Nature Revs Molec., Cell. Biol. 2, 307-314.Google Scholar
  33. Grossman, A.R., Bhaya, D. 6 He, Q. (2001). Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem., 276, 11449-11452.PubMedCrossRefGoogle Scholar
  34. Gualtieri, P. 2001. Rhodopsin-like proteins: Light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 281-295). Amsterdam: Elsevier. ISBN 0-444-50706-X.Google Scholar
  35. Hansson, K.M., Li, B. & Simon, J.D. (1997). A spectroscopic study of the epidermal ultraviolet chromophore trans-urocanic acid. J. Am. Chem. Soc, 119, 2715-2721.CrossRefGoogle Scholar
  36. Hartmann, U., Valentine, W.J., Christie, J.M., Hays, J., Jenkins, G.I. & Weisshaar, B. (1998). Identification of UV/blue light-responsive elements in the Arabidopsis thaliana chalcone synthasepromoter using a homologous protoplast transient expression system. Plant Molecul. Biol., 36, 741-754.CrossRefGoogle Scholar
  37. Hattar, S., Liao, H.-W., Takao, M., Berson, D.M. & Yau, K.-W. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070.PubMedCrossRefGoogle Scholar
  38. Haupt, W. (1970). Localization of phytochrome in the cell. Physiol. Vég., 8, 551-563.Google Scholar
  39. Hashimoto, T., Shichijo, C. & Yatsuhashi, H. (1991). Ultraviolet action spectra for the induction and inhibition ofanthocyanin synthesis in broom sorghum seedlings. J. Photochem. Photobiol B.: Biol., 11, 353-363.CrossRefGoogle Scholar
  40. Hegemann, P. & Deininger, W. (2001). Algal eyes and their rhodopsin photoreceptors. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 475-503). Amsterdam: Elsevier. ISBN 0-444-50706-X.Google Scholar
  41. Herdman, M., Coursin, T., Rippka, R., Houmard, J. & Tandeau de Marsac, N. (2000). A new appraisal of the prokaryotic origin on eukaryotic phytochromes. J. Mol. Evol., 51, 205-213.PubMedGoogle Scholar
  42. Hoff, W.D., Jung, K.-H. and Spudich (1997). Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol Struct., 26,223-258.CrossRefGoogle Scholar
  43. Hubschmann, T., Borner, T., Hartmann, E. & Lamparter, T. (2001). Characterization of the Cphl holo- phytochrome from Synechocystis sp. PCC 6803. Eur. J. Biochem., 268, 2055-2063.PubMedCrossRefGoogle Scholar
  44. lino, M. (2001). Phototropism in higher plants. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 659-812). Amsterdam: Elsevier. ISBN 0-444-50706-X.Google Scholar
  45. Jiang, Z.Y., Swem, L.R., Rushing, B.G., Devanathan, S., Tollin, G. & Bauer, C.E. (1999). Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science, 285, 406-409.PubMedCrossRefGoogle Scholar
  46. Jones, A.M. & Quail, P. (1986). Quaternary structure of 124-kilodalton phytochrome from Avena sativa L. Biochemistry, 25, 2987-2995.CrossRefGoogle Scholar
  47. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguru, S., Kato, T., Tabata, S., Okada, K. & Wada, M. (2001). Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138-2141.PubMedCrossRefGoogle Scholar
  48. Kalbin, G. (2001). Towards the understanding of biochemical plant responses to UV-B. Diss. Göteborg University. ISBN 91-628-4627-2.Google Scholar
  49. Kehoe, D.M. & Grossman, A.R. (1996). Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science, 273, 1409-1412.PubMedCrossRefGoogle Scholar
  50. Lamparter, T. & Marwan, W. (2001). Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete Physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation by Pfr. Photochem. Photobiol., 73, 697-702.CrossRefGoogle Scholar
  51. Laudet, V. (1997). Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Molec. Biol., 19, 207-226.Google Scholar
  52. Lazaroff, N. (1973). Photomorphogenesis and Nostocacean development. In Carr, N.G. & Whitton, B.A. (eds) Biology of blue-green algae (Botanical Monographs, vol. 9). Oxford: Blackwell Scientific Publications.Google Scholar
  53. Lazaroff, N. & Schiff, J. (1962). Action spectrum for developmental photoinduction of the blue-green alga Nostoc muscorum. Science, 137, 603-604.PubMedCrossRefGoogle Scholar
  54. Lenci, F. Ghetti, F. & Song, P.-S. (2001). Photomovement in ciliates. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 281-295). Amsterdam: Elsevier. ISBN 0-444-50706-X.Google Scholar
  55. Li, B., Hanson, K.M. & Simon, J.D. (1997). Primary processes of the electronic excited states of trans- urocanic acid. Phys. Chem. A., 101, 969-972.CrossRefGoogle Scholar
  56. Lin, C, Robertson, D.E., Ahmad, M., Raibekas, A.A., Schuman Jorns, M., Dutton, PL. & Cashmore, A.R. (1995). Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science, 269, 968-970.PubMedCrossRefGoogle Scholar
  57. Lin, C. (2000). Plant blue-light receptors. Trends Plant Sci, 5,337-342.PubMedCrossRefGoogle Scholar
  58. Merrow. M. & Roenneberg, T. (2001). Circadian clocks: Running on redox. Cell, 106, 141-143.PubMedCrossRefGoogle Scholar
  59. Mohr, H. (1994). Coaction between pigment systems. In Kendrick, R.E. & Kronenberg, G.H.M. (eds) Photomorphogenesis in plants, 2nd ed. Dordrecht: Kluwer Acad. Publ. ISBN 0-7923-2551-6.Google Scholar
  60. Morrison, H., Avnir, D., Bernasconi, C. & Fagan, G. (1980). Z/E photoisomerisation of urocanic acid. Photochem. Photobiol., 32, 711-714CrossRefGoogle Scholar
  61. Morrison, H., Bernasconi, C. & Pandey, G. (1984). A wavelength effect on urocanic acid E/Z photoisomerisation. Photochem. Photobiol., 40, 549-550PubMedCrossRefGoogle Scholar
  62. Neff, M.M. & Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol., 118,27-35PubMedCrossRefGoogle Scholar
  63. Nozue, K., Kanegae, T., I(maizumi, T., Fukuda,S., Okamoto, H., Yeah, K.-C., Lagarias, J.C. & Wada, M. (1998). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl Acad. Sci. USA, 95, 15826-15830PubMedCrossRefGoogle Scholar
  64. Okada, T., Ernst, O.P., Palczewski, K. & Hofinann, K.P. (2001). Activation of rhodopsin: new insights from structural and biochemical studies. Trends Bioch Sci., 26, 318-324CrossRefGoogle Scholar
  65. Page, C.S., Merchán, M. & Serrano-Andrés, L. (1999). A theoretical study of the low-lying excited states of trans- and cis-urocanic acid. J. Phys. Chem. A, 103, 9864-9871CrossRefGoogle Scholar
  66. Parks, B.M., Folta, K.M. 6 Spalding, E.P. (2001). Photocontrol of stem growth. Curr. Opinion Plant Biol., 2001,436-440CrossRefGoogle Scholar
  67. Pellequeler, J.-L., Wagner-Smith, K.A., Kay, S.A. & Getzoff, E.D. (1998). Photoactive yellow protein: A structural prototype for the three-dimensional fold o the PAS domain superfamily. Proc. Natl. Acad. Sci. USA, 95, 5884-5890CrossRefGoogle Scholar
  68. Portwich, A. & Garcia-Pichel, F. (2000). A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem. Photobiol., 71, 493-498PubMedCrossRefGoogle Scholar
  69. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. & Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA, 95, 340-345PubMedCrossRefGoogle Scholar
  70. Rospendowski, B.N., Farrens, D.L., Cotton, T.M. & Song, P.-S. (1989). Surface enhanced resonance Raman scattering (SERRS) as a probe of the structural differences between the Pr and Pfr forms of phytochrome. FEBS Lett., 258,1-4.PubMedCrossRefGoogle Scholar
  71. Ryan, W. & Levy, D.H. (2001). Electronic spectroscopy and photoisomerisation of trans-urocanic acid in a supersonic jet. J. Am. Chem. Soc., 123, 961-966.PubMedCrossRefGoogle Scholar
  72. Sage, L.C. (1992). Pigment of the imagination: a history of phytochrome research. San Diego: Academic Press. ISBN 0126144451Google Scholar
  73. Salomon, M., Christie, J.M., Knieb, E., Lempert, U. & Briggs, W.R. (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39, 9401-9410.PubMedCrossRefGoogle Scholar
  74. Scheibe, J. (1962). Photoreversible pigment: occurence in a blue-green alga. Science, 176, 1037-1039.CrossRefGoogle Scholar
  75. Schmid, G.H. (1970). The effect of blue light on some flavine enzymes, Hoppe Seylers Z. Physiol Chem., 351, 575-578CrossRefGoogle Scholar
  76. Schmid, G.H. & Schwarze, P. (1969). Blue light enhanced respiration in a colorless Chlorella mutant, Hoppe Seylers Z. Physiol. Chem., 350, 1513-1520CrossRefGoogle Scholar
  77. Schneider-Poetsch, H.A.W., Kolukisaoglu, U., Clapham, D.H., Hughes, J. & Lamparter, T. (1998). Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant., 102, 612-622CrossRefGoogle Scholar
  78. Shropshire, W. & Withrow, R.B. (1958). Action spectrum of phototropic tip-curvature of Avena. Plant Physiol., 33,360-366PubMedCrossRefGoogle Scholar
  79. Sineshchekov, V.A. (1995). Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. Biochim. Biophys. Acta, 1228,125-164CrossRefGoogle Scholar
  80. Spudich, J.L. (2001). Color-sensitive vision by halobacteria. In Häder, D.-P. & Lebert, M. (eds,) Photomovement (pp. 151-178). Amsterdam: Elsevier. ISBN 0-444-50706-XGoogle Scholar
  81. Sundqvist, D. & Björn, L.O. (1983a). Light-induced linear dichroism in photoreversibly photochromic sensor pigments. -II. Chromophore rotation in immobilized phytochrome. Photochem. Photobiol. 37, 69-75CrossRefGoogle Scholar
  82. Sundqvist, D. & Björn, L.O. (1983b). Light-induced linear dichroism in photoreversibly photochromic sensor pigments. -III. Chromophore rotation estimated by polarized light reversal of dichroism. Physiol. Plant., 59,263-269CrossRefGoogle Scholar
  83. Takeda, J., Ozeki, Y. & Yoshida, K. (1997). An action spectrum for induction of promoter activity of phenylammonia lyase gene by UV in carrot suspension cells. Photochem. Photobiol., 66,464-470PubMedCrossRefGoogle Scholar
  84. Taylor, R.R. & Zhulin, LB. (1999). PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Molecular Biol. Revs, 63, 479-506Google Scholar
  85. Thimann, K.V. & Curry, G.M. (1961). Phototropism. In McElroy, W.D. & Glass, B. (eds) Light and life (pp. 646-672). Baltimore: Johns Hopkins Press. Library of Congress Catalog Card Number 60- 16544Google Scholar
  86. Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., Nomura, T. & Ikenaga, M. (1996). Science, 272, 109-112.PubMedCrossRefGoogle Scholar
  87. Tokutomi, S. & Mimuro, M. (1989). Orientation of the chromophore transition moment in the 4-leaved shape model for pea phytochrome molecule in red-light absorbing form and its rotation induced by the phototransformation to the far-red-light absorbing form. FEBS Lett., 255, 350-353CrossRefGoogle Scholar
  88. Wade, H.K., Bibikova, T.N., Valentine, W.J. & Jenkins, G.I. (2001). Interactions within a network of phytochrome, cryptochrome and UV-B transduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J., 25, 675-685.PubMedCrossRefGoogle Scholar
  89. Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y. & Deng, W.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in mediation of photomorphogenic development. Science, 294, 154-158PubMedCrossRefGoogle Scholar
  90. Watson, J.C. (2000). Light and protein kinases. Adv. Botanical Res. Incorporating Adv. Plant Pathol., 32, 149-184Google Scholar
  91. Wellmann, E. (1975). Der Einfluss physiologischer UV-Dosen auf Wachstum und Pigmentierung von Umbelliferenkeimlingen. In Bacher, E. (ed.) Industrieller Pflanzenbau (pp. 229-239). Tech. Univ. Wien SelbstverlagGoogle Scholar
  92. Wellmann, E. (1983). UV radiation in Photomorphogenesis. In Shropshire Jr, W. & Mohr, H. (eds) Enc. Plant Physiol., New Series 16B (pp. 745-756). Springer VerlagGoogle Scholar
  93. Yatsuhashi, H., Hashimoto, T. & Shimizu, S. (1982). Ultraviolet action spectrum for anthocyanin formation in broom Sorghum first internodes. Plant Physiol., 70, 735-741.PubMedCrossRefGoogle Scholar
  94. Zeiger, E. (2000). Sensory transduction of blue light in guard cells. Trends Plant Sci., 5, 183-185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Lars Olof Björn
    • 1
  1. 1.Department of Cell and Organism BiologyLund UniversityLundSweden

Personalised recommendations