Skip to main content

The Photochemical Reactions in Biological Light Perception and Regulation

  • Chapter
Book cover Photobiology

Abstract

1. INTRODUCTION

Many photochemical reactions involved in the sensing of and regulation by light and ultraviolet radiation by organisms consist of cis-trans (and trans-cis) isomerisations. We shall start with this class of photosensors, and then go on to other mechanisms. There are many more known and unknown light-sensing molecular systems than those briefly described below, but (except for the first one) I have tried to concentrate on those more widespread. As examples of light-sensing pigments with a very limited distribution, one can mention stentorin and blepharismin of certain ciliates (Lenci et al. 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Assmann, S.M. & Wang, X.-Q. (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opinion Plant Biol., 4,421-428.

    Article  CAS  Google Scholar 

  • Ballaré, C.L., Barnes, P.W. & Flint, S.D. (1995). Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. I. The photoreceptor. Physiol. Plant., 93,584-592.

    Article  Google Scholar 

  • Ballario, P. & Macino, G. (1997). White-collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol, 5,458-462.

    Article  PubMed  CAS  Google Scholar 

  • Barinaga, M. (2002). How the brain's clock gets daily enlightenment. Science, 295, 955-957.

    Article  PubMed  CAS  Google Scholar 

  • Beale, S.I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis Res. 60,43-73.

    Article  CAS  Google Scholar 

  • Beggs, C.J. & Wellmann, E. (1985). Analysis of light-controlled anthocyanin formation in coleoptiles of Zea mays L.: The role of UV-B, blue, red and far-red light. Photochem. Photobiol., 41, 481-486.

    Article  CAS  Google Scholar 

  • Beggs, C.J. & Wellmann, E. (1994). Photocontrol of flavonoid synthesis. In Kendrick, R.E. & Kronenberg, G.H.M. (eds) Photomorphogenesis in plants, 2nd ed., pp. 733-751. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Berson, D.M., Dunn, F.A. & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073.

    Article  PubMed  CAS  Google Scholar 

  • Bhoo, S.-H., Davis, S.D., Walker, J., Karniol, B. & Vierstra, R.D. (2001). Bacteriophytochromes are photochromic histidine kinasis using a biliverdin chromophore. Nature, 414, 776-779.

    Article  PubMed  CAS  Google Scholar 

  • Björn, G.S. (1980). Photoreversibly photochromic pigments from blue-green algae. Diss. Lund University. LUNBDS/(NBFB-1009/l-28/(1980).

    Google Scholar 

  • Björn, G.S. & Björn, L.O. (1978). Action spectra for conversions of phytochrome c from Nostoc muscorum. Physiol. Plant., 43, 195-200.

    Article  Google Scholar 

  • Björn, L.O. (1970). Photoreversibly photochromic pigments in organisms: properties and role in biological light perception. Quart. Revs Biophys., 12,1-23.

    Article  Google Scholar 

  • Björn, L.O. (1984). Light-induced linear dichroism in photoreversibly photochromic sensor pigments. - V. Reinterpretation of the experiments on in vivo action dichroism of phytochrome. Physiol. Plant, 60, 369-372.

    Article  Google Scholar 

  • Björn, L.O. (1999). UV-B effects: Receptors and targets. In Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., & Govindjee (eds) Concepts in photobiology: Photosynthesis and photomorphogenesis (pp.821-832). New Delhi: Narosa Publishing House.

    Google Scholar 

  • Boylan, M.T. & Quail, P. H. (1996). Are the phytochromes protein kinases? Protoplasma 195,12-17.

    Article  CAS  Google Scholar 

  • Briggs, W.R., Beck, C.F., Cashmore, A.R. et al . (17 authors) (2001). The phototropin family of photoreceptors. Plant Cell, 13,993-991.

    PubMed  CAS  Google Scholar 

  • Brosché, M. 2001. Deconstruction of a plant UV-B stress response. Diss. Göteborg University. pp. 60 . ISBN 91-628-4606-X.

    Google Scholar 

  • Christie, J.M. & Briggs, W.R. (2001). Blue light sensing in higher plants. J. Biol. Chem., 276, 11457-11460.

    Article  PubMed  CAS  Google Scholar 

  • Crosson, S. & Moffat, K. (2001). structure of a flavin-binding plant photoreceptor domain: Insights into light mediated signal transduction. Proc. Natl Acad. Sci. USA, 98,2995-3000.

    Article  PubMed  CAS  Google Scholar 

  • Davis, S.J., Vener, A.V. & Vierstra, R.D. (1999). Bacteriophytochromes: Photochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 286, 2517-2520.

    Article  PubMed  CAS  Google Scholar 

  • Diakoff, S. & Scheibe, J. (1973). Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol., 57,382-385.

    Article  Google Scholar 

  • Etzold, H. (1965). Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta, 64,254-280.

    Article  CAS  Google Scholar 

  • Folta, K.M. & Spalding, E.P. (2001). Unexpected roles for cryptochrome2 and phototropin revealed by high-resolution analysis of blue ligh-mediated hypocotyl growth inhibition. Plant J., 26,471-478.

    Article  PubMed  CAS  Google Scholar 

  • Foster, K.W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T. & Nakashini, K. (1984). A rhodopsin is the functioning photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature, 311, 756-759.

    Article  PubMed  CAS  Google Scholar 

  • Frohnmeyer, H., Bowler, C. & Schäfer, E. (1997). Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplasts. J. Exp. Bot. 48, 739-750.

    Article  CAS  Google Scholar 

  • Frohnmeyer, H., Bowler, C, Zhu, J.-K., Yamagata, H., Schäfer, E. & Chua, N.-H. (1998). different roles for calcium and calmodulin in phytochrome- and UV-regulated expression of chalcone synthase.Plant J., 13,763-77.

    Article  CAS  Google Scholar 

  • Frohnmeyer, H., Loyall, L., Blatt, M.R. & Grabov, A. (1999). Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+and stimulates gene expression in transgenic parsley cell cultures. Plant J., 20,109-117.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y. & Hattori, A. (1962). Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Plant Cell Physiol. 3,209-220.

    CAS  Google Scholar 

  • Galland, P. (2001). Phototropism in Phycornyces.. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 621-657). Amsterdam: Elsevier. ISBN 0-444-50706-X.

    Google Scholar 

  • Genick, U.K., Borgstrahl, G.E.O., Kingman, N., Ren, Z., Pradervand, C., Burke, P.M., Srajer, V., Teng, T.-Y., Schildkamp, W., McRee, D.E., Moffat, K. & Getzoff, E.D. (1997). Structure of a protein cycle intermediate by millisecond time-resolved crystallography. Science, 275, 1471-1475.

    Article  PubMed  CAS  Google Scholar 

  • Genick, U.K., Soltis, S.M., Kuhn, P., Canestrelli, I.L. & Getzoff, E.D. (1998). Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature, 392, 206-209.

    Article  PubMed  CAS  Google Scholar 

  • Gilroy, S. & Trewavas, A. (2001). Signal processing and transduction in plant cells: The end of a beginning? Nature Revs Molec., Cell. Biol. 2, 307-314.

    CAS  Google Scholar 

  • Grossman, A.R., Bhaya, D. 6 He, Q. (2001). Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem., 276, 11449-11452.

    Article  PubMed  CAS  Google Scholar 

  • Gualtieri, P. 2001. Rhodopsin-like proteins: Light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 281-295). Amsterdam: Elsevier. ISBN 0-444-50706-X.

    Google Scholar 

  • Hansson, K.M., Li, B. & Simon, J.D. (1997). A spectroscopic study of the epidermal ultraviolet chromophore trans-urocanic acid. J. Am. Chem. Soc, 119, 2715-2721.

    Article  Google Scholar 

  • Hartmann, U., Valentine, W.J., Christie, J.M., Hays, J., Jenkins, G.I. & Weisshaar, B. (1998). Identification of UV/blue light-responsive elements in the Arabidopsis thaliana chalcone synthasepromoter using a homologous protoplast transient expression system. Plant Molecul. Biol., 36, 741-754.

    Article  CAS  Google Scholar 

  • Hattar, S., Liao, H.-W., Takao, M., Berson, D.M. & Yau, K.-W. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, W. (1970). Localization of phytochrome in the cell. Physiol. Vég., 8, 551-563.

    CAS  Google Scholar 

  • Hashimoto, T., Shichijo, C. & Yatsuhashi, H. (1991). Ultraviolet action spectra for the induction and inhibition ofanthocyanin synthesis in broom sorghum seedlings. J. Photochem. Photobiol B.: Biol., 11, 353-363.

    Article  CAS  Google Scholar 

  • Hegemann, P. & Deininger, W. (2001). Algal eyes and their rhodopsin photoreceptors. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 475-503). Amsterdam: Elsevier. ISBN 0-444-50706-X.

    Google Scholar 

  • Herdman, M., Coursin, T., Rippka, R., Houmard, J. & Tandeau de Marsac, N. (2000). A new appraisal of the prokaryotic origin on eukaryotic phytochromes. J. Mol. Evol., 51, 205-213.

    PubMed  CAS  Google Scholar 

  • Hoff, W.D., Jung, K.-H. and Spudich (1997). Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol Struct., 26,223-258.

    Article  CAS  Google Scholar 

  • Hubschmann, T., Borner, T., Hartmann, E. & Lamparter, T. (2001). Characterization of the Cphl holo- phytochrome from Synechocystis sp. PCC 6803. Eur. J. Biochem., 268, 2055-2063.

    Article  PubMed  CAS  Google Scholar 

  • lino, M. (2001). Phototropism in higher plants. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 659-812). Amsterdam: Elsevier. ISBN 0-444-50706-X.

    Google Scholar 

  • Jiang, Z.Y., Swem, L.R., Rushing, B.G., Devanathan, S., Tollin, G. & Bauer, C.E. (1999). Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science, 285, 406-409.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A.M. & Quail, P. (1986). Quaternary structure of 124-kilodalton phytochrome from Avena sativa L. Biochemistry, 25, 2987-2995.

    Article  CAS  Google Scholar 

  • Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguru, S., Kato, T., Tabata, S., Okada, K. & Wada, M. (2001). Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138-2141.

    Article  PubMed  CAS  Google Scholar 

  • Kalbin, G. (2001). Towards the understanding of biochemical plant responses to UV-B. Diss. Göteborg University. ISBN 91-628-4627-2.

    Google Scholar 

  • Kehoe, D.M. & Grossman, A.R. (1996). Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science, 273, 1409-1412.

    Article  PubMed  CAS  Google Scholar 

  • Lamparter, T. & Marwan, W. (2001). Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete Physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation by Pfr. Photochem. Photobiol., 73, 697-702.

    Article  CAS  Google Scholar 

  • Laudet, V. (1997). Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Molec. Biol., 19, 207-226.

    CAS  Google Scholar 

  • Lazaroff, N. (1973). Photomorphogenesis and Nostocacean development. In Carr, N.G. & Whitton, B.A. (eds) Biology of blue-green algae (Botanical Monographs, vol. 9). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Lazaroff, N. & Schiff, J. (1962). Action spectrum for developmental photoinduction of the blue-green alga Nostoc muscorum. Science, 137, 603-604.

    Article  PubMed  CAS  Google Scholar 

  • Lenci, F. Ghetti, F. & Song, P.-S. (2001). Photomovement in ciliates. In Häder, D.-P. & Lebert, M. (eds) Photomovement (pp. 281-295). Amsterdam: Elsevier. ISBN 0-444-50706-X.

    Google Scholar 

  • Li, B., Hanson, K.M. & Simon, J.D. (1997). Primary processes of the electronic excited states of trans- urocanic acid. Phys. Chem. A., 101, 969-972.

    Article  CAS  Google Scholar 

  • Lin, C, Robertson, D.E., Ahmad, M., Raibekas, A.A., Schuman Jorns, M., Dutton, PL. & Cashmore, A.R. (1995). Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science, 269, 968-970.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. (2000). Plant blue-light receptors. Trends Plant Sci, 5,337-342.

    Article  PubMed  CAS  Google Scholar 

  • Merrow. M. & Roenneberg, T. (2001). Circadian clocks: Running on redox. Cell, 106, 141-143.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, H. (1994). Coaction between pigment systems. In Kendrick, R.E. & Kronenberg, G.H.M. (eds) Photomorphogenesis in plants, 2nd ed. Dordrecht: Kluwer Acad. Publ. ISBN 0-7923-2551-6.

    Google Scholar 

  • Morrison, H., Avnir, D., Bernasconi, C. & Fagan, G. (1980). Z/E photoisomerisation of urocanic acid. Photochem. Photobiol., 32, 711-714

    Article  CAS  Google Scholar 

  • Morrison, H., Bernasconi, C. & Pandey, G. (1984). A wavelength effect on urocanic acid E/Z photoisomerisation. Photochem. Photobiol., 40, 549-550

    Article  PubMed  CAS  Google Scholar 

  • Neff, M.M. & Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol., 118,27-35

    Article  PubMed  CAS  Google Scholar 

  • Nozue, K., Kanegae, T., I(maizumi, T., Fukuda,S., Okamoto, H., Yeah, K.-C., Lagarias, J.C. & Wada, M. (1998). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl Acad. Sci. USA, 95, 15826-15830

    Article  PubMed  CAS  Google Scholar 

  • Okada, T., Ernst, O.P., Palczewski, K. & Hofinann, K.P. (2001). Activation of rhodopsin: new insights from structural and biochemical studies. Trends Bioch Sci., 26, 318-324

    Article  CAS  Google Scholar 

  • Page, C.S., Merchán, M. & Serrano-Andrés, L. (1999). A theoretical study of the low-lying excited states of trans- and cis-urocanic acid. J. Phys. Chem. A, 103, 9864-9871

    Article  CAS  Google Scholar 

  • Parks, B.M., Folta, K.M. 6 Spalding, E.P. (2001). Photocontrol of stem growth. Curr. Opinion Plant Biol., 2001,436-440

    Article  Google Scholar 

  • Pellequeler, J.-L., Wagner-Smith, K.A., Kay, S.A. & Getzoff, E.D. (1998). Photoactive yellow protein: A structural prototype for the three-dimensional fold o the PAS domain superfamily. Proc. Natl. Acad. Sci. USA, 95, 5884-5890

    Article  Google Scholar 

  • Portwich, A. & Garcia-Pichel, F. (2000). A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem. Photobiol., 71, 493-498

    Article  PubMed  CAS  Google Scholar 

  • Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. & Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA, 95, 340-345

    Article  PubMed  CAS  Google Scholar 

  • Rospendowski, B.N., Farrens, D.L., Cotton, T.M. & Song, P.-S. (1989). Surface enhanced resonance Raman scattering (SERRS) as a probe of the structural differences between the Pr and Pfr forms of phytochrome. FEBS Lett., 258,1-4.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, W. & Levy, D.H. (2001). Electronic spectroscopy and photoisomerisation of trans-urocanic acid in a supersonic jet. J. Am. Chem. Soc., 123, 961-966.

    Article  PubMed  CAS  Google Scholar 

  • Sage, L.C. (1992). Pigment of the imagination: a history of phytochrome research. San Diego: Academic Press. ISBN 0126144451

    Google Scholar 

  • Salomon, M., Christie, J.M., Knieb, E., Lempert, U. & Briggs, W.R. (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39, 9401-9410.

    Article  PubMed  CAS  Google Scholar 

  • Scheibe, J. (1962). Photoreversible pigment: occurence in a blue-green alga. Science, 176, 1037-1039.

    Article  Google Scholar 

  • Schmid, G.H. (1970). The effect of blue light on some flavine enzymes, Hoppe Seylers Z. Physiol Chem., 351, 575-578

    Article  CAS  Google Scholar 

  • Schmid, G.H. & Schwarze, P. (1969). Blue light enhanced respiration in a colorless Chlorella mutant, Hoppe Seylers Z. Physiol. Chem., 350, 1513-1520

    Article  CAS  Google Scholar 

  • Schneider-Poetsch, H.A.W., Kolukisaoglu, U., Clapham, D.H., Hughes, J. & Lamparter, T. (1998). Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant., 102, 612-622

    Article  CAS  Google Scholar 

  • Shropshire, W. & Withrow, R.B. (1958). Action spectrum of phototropic tip-curvature of Avena. Plant Physiol., 33,360-366

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov, V.A. (1995). Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. Biochim. Biophys. Acta, 1228,125-164

    Article  Google Scholar 

  • Spudich, J.L. (2001). Color-sensitive vision by halobacteria. In Häder, D.-P. & Lebert, M. (eds,) Photomovement (pp. 151-178). Amsterdam: Elsevier. ISBN 0-444-50706-X

    Google Scholar 

  • Sundqvist, D. & Björn, L.O. (1983a). Light-induced linear dichroism in photoreversibly photochromic sensor pigments. -II. Chromophore rotation in immobilized phytochrome. Photochem. Photobiol. 37, 69-75

    Article  CAS  Google Scholar 

  • Sundqvist, D. & Björn, L.O. (1983b). Light-induced linear dichroism in photoreversibly photochromic sensor pigments. -III. Chromophore rotation estimated by polarized light reversal of dichroism. Physiol. Plant., 59,263-269

    Article  CAS  Google Scholar 

  • Takeda, J., Ozeki, Y. & Yoshida, K. (1997). An action spectrum for induction of promoter activity of phenylammonia lyase gene by UV in carrot suspension cells. Photochem. Photobiol., 66,464-470

    Article  PubMed  CAS  Google Scholar 

  • Taylor, R.R. & Zhulin, LB. (1999). PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Molecular Biol. Revs, 63, 479-506

    CAS  Google Scholar 

  • Thimann, K.V. & Curry, G.M. (1961). Phototropism. In McElroy, W.D. & Glass, B. (eds) Light and life (pp. 646-672). Baltimore: Johns Hopkins Press. Library of Congress Catalog Card Number 60- 16544

    Google Scholar 

  • Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., Nomura, T. & Ikenaga, M. (1996). Science, 272, 109-112.

    Article  PubMed  CAS  Google Scholar 

  • Tokutomi, S. & Mimuro, M. (1989). Orientation of the chromophore transition moment in the 4-leaved shape model for pea phytochrome molecule in red-light absorbing form and its rotation induced by the phototransformation to the far-red-light absorbing form. FEBS Lett., 255, 350-353

    Article  CAS  Google Scholar 

  • Wade, H.K., Bibikova, T.N., Valentine, W.J. & Jenkins, G.I. (2001). Interactions within a network of phytochrome, cryptochrome and UV-B transduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J., 25, 675-685.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y. & Deng, W.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in mediation of photomorphogenic development. Science, 294, 154-158

    Article  PubMed  CAS  Google Scholar 

  • Watson, J.C. (2000). Light and protein kinases. Adv. Botanical Res. Incorporating Adv. Plant Pathol., 32, 149-184

    CAS  Google Scholar 

  • Wellmann, E. (1975). Der Einfluss physiologischer UV-Dosen auf Wachstum und Pigmentierung von Umbelliferenkeimlingen. In Bacher, E. (ed.) Industrieller Pflanzenbau (pp. 229-239). Tech. Univ. Wien Selbstverlag

    Google Scholar 

  • Wellmann, E. (1983). UV radiation in Photomorphogenesis. In Shropshire Jr, W. & Mohr, H. (eds) Enc. Plant Physiol., New Series 16B (pp. 745-756). Springer Verlag

    Google Scholar 

  • Yatsuhashi, H., Hashimoto, T. & Shimizu, S. (1982). Ultraviolet action spectrum for anthocyanin formation in broom Sorghum first internodes. Plant Physiol., 70, 735-741.

    Article  PubMed  CAS  Google Scholar 

  • Zeiger, E. (2000). Sensory transduction of blue light in guard cells. Trends Plant Sci., 5, 183-185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björn, L.O. (2002). The Photochemical Reactions in Biological Light Perception and Regulation. In: Björn, L.O. (eds) Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0581-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0581-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3936-9

  • Online ISBN: 978-94-010-0581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics