Skip to main content

Action Spectroscopy in Biology

  • Chapter
Photobiology
  • 250 Accesses

Abstract

1. INTRODUCTION

Action spectroscopy is a method for finding out what the initial step is in a photobiological or photochemical process. More exactly, the method serves to identify the kind of molecule absorbing the active light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Avery, O.T., MacLeod, CM. & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med., 79, 137-157.

    Article  PubMed  CAS  Google Scholar 

  • Björn, L.O. (1969a). Action spectra for transformation and fluorescence of protochlorophyll holochrome from bean leaves. Physiol Plant, 22, 1-17.

    Article  Google Scholar 

  • Björn, L.O. (1969b). Studies on the phototransformation and fluorescence of protochlorophyll holochrome in vitro. In Metzner, H. (ed.), Progr. in photosynthesis research, Vol. II, pp. 618-629. Tübingen.

    Google Scholar 

  • Diakoff, S. & Scheibe, J. (1973). Action spectra for chromatic adaptation in Tolypothrix tenuis . Plant Physiol., 51, 382-385.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann, Th. W. (1882a). Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot.Ztg., 40,419-426.

    Google Scholar 

  • Engelmann, Th. W. (1882b). Ueber Assimilation von Haematococcus. Bot. Ztg., 40, 663-669.

    Google Scholar 

  • Engelmann, Th. W. (1884). Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Ztg., 42, 81-94, 97-106 & Tafel II.

    Google Scholar 

  • Fujita, Y. & Hattori, A. (1962). Photochemical interconversion between precursors of phycobilin hromoproteids in Tolypothrix tenuis . Plant Cell Physiol., 3, 209-220.

    CAS  Google Scholar 

  • Gates, F.L. (1928). On nuclear derivatives and the lethal action of ultra-violet light. Science, 68, 479- 480.

    Article  PubMed  CAS  Google Scholar 

  • Gates, F.L. (1930). A study of the bactericidal action of ultra violet light. I. The reaction to monochromatic radiations. J. Gen. Physiol., 14,31-42.

    Article  PubMed  CAS  Google Scholar 

  • Gates, F.L. (1931). A study of the action of ultra violet light III. The absorption of ultra violet light by bacteria. J. Gen. Physiol., 14, 31-42.

    Article  Google Scholar 

  • Griffith, F. (1928). The significance of pneumococcal types. J. Hygiene, 27, 113-159.

    Article  CAS  Google Scholar 

  • Hartmann, K.M. (1967). Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch, 22b, 266-275.

    Google Scholar 

  • Haxo, F.T. (1960). The wavelength dependence of photosynthesis and the role of accessory pigments. - In Allen, M.B. (ed.). Comparative biochemistry of photoreactive systems, pp. 339-376. New York: Academic Press.

    Google Scholar 

  • Haxo, F.T. & Blinks, L.R. (1950). Photosynthetic action spectra of marine algae. J. Gen. Physiol. , 33, 389-422.

    Article  PubMed  CAS  Google Scholar 

  • Hertel, E. (1905). Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zschr. Allgem. Physiologie, 5, 95-122.

    Google Scholar 

  • Hollaender, A. & Claus, W.D. (1936). The bactericidal effect of ultraviolet radiation on Escherichia coli in liquid suspensions. J. Gen. Physiol., 19, 753-765.

    Article  PubMed  CAS  Google Scholar 

  • Giese, A.C. & Leighton, P. A. (1935). Quantitative studies on the photolethal effects of quartz ultra-violet radiation upon Paramecium . J. Gen. Physiol., 18, 557-571.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, P.E. (1986). Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism. Physiol. Plant., 66, 207-210.

    Article  Google Scholar 

  • Levring, T. (1947). Submarine daylight and the photosynthesis of marine algae. Göteborgs Kgl. Vetenskaps- och Vitterhets-samhälles Handl., 6:e följden, ser. B, band 5, nr 6. 90 s.

    Google Scholar 

  • Pringsheim, N. (1886). Zur Beurtheilung der Engelmann'schen Bakterienmethode in ihrer Brauchbarkeit zur quantitativen Bstimmung der Sauerstoffabgabe im Spektrum. Ber. d. deutsch. bot. Ges, 4, 40- 46.

    Google Scholar 

  • Schopfer, P. & Siegelman, H.W. (1969). Purification of protochlorophyllide holochrome. In Metzner, H., (ed.), Progress in photosynthesis research Vol. II, pp. 612-618, Tübingen.

    Google Scholar 

  • Timiriazeff, C. (1885). Átat actuel de nos conaissances sur la fonction chlorophyllienne. Ann. des sc. nat. Botanique (3) T.II.

    Google Scholar 

  • Vierstra, R.D. & Quail, P.H. (1983a). Purification and initial characterization of 124-kilodalton phytochrome from Avena . Biochemistry, 22, 2498-2505.

    Article  CAS  Google Scholar 

  • Vierstra, R.D. & Quail, P.H. (1983b). Photochemistry of 124-kilodalton Avena phytochrome in vitro . - Plant Physiol, 72, 264-267.

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann, T.C. & Scheibe, J. (1978). Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon . Planta, 143, 233-239.

    Article  CAS  Google Scholar 

  • Warburg, O. 1926. Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem. Z, 177, 471-486.

    CAS  Google Scholar 

  • Warburg, O. & Negelein, E. (1929a). Über die photochemische Dissoziation bei intermittierender Belichtung und das absolute Absorptionsspektrum des Atmungsferments. Biochem. Z., 202, 202-228.

    Google Scholar 

  • Warburg, O. & Negelein, E. (1929b). Absolutes Absorptionsspektrum des Atmungsferments. Biochem. Z, 204, 495-499.

    CAS  Google Scholar 

  • Withrow, R.B., Klein, W.H. & Elstad, V. (1957). Action spectra of photomorphogenetic induction and its inactivation. Plant Physiol. , 32, 453-462.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björn, L.O. (2002). Action Spectroscopy in Biology. In: Björn, L.O. (eds) Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0581-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0581-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3936-9

  • Online ISBN: 978-94-010-0581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics