Advertisement

Photobiology pp 335-387 | Cite as

The Biological Clock and Its Resetting by Light

  • Anders Johnsson
  • Wolfgang Engelmann

Abstract

1. OVERVIEW

This chapter presents the role light plays in synchronizing biological clocks with the 24 hour cycles of the earth. We will first characterize the different clocks used by organisms. The functions and properties of these clocks are mentioned. In the following section we explain how light synchronizes circadian (that is close to 24 hour) clocks as well as other effects of light on circadian rhythms. Models and mechanisms of circadian clocks are discussed to understand the effects of light. The main part of the chapter presents several examples of organisms and their circadian systems. Man and mice are chosen as representatives of mammals. Furthermore we discuss the insect Drosophila, some plants including Arabidopsis, the unicellular dinoflagellate Gonyaulax, the ascomycetal fungus Neurospora and a cyanobacterium. In selecting these examples we want to show the general occurrence of circadian rhythms in almost all organisms and the similarities and differences in the effects of light and the mechanisms of the circadian clocks used by them. It will also become obvious that there are many questions open as is typical for a rapidly progressing research area.

General literature on the subject can be found in Roenneberg and Foster (1997). Dunlap (1999), Lakin-Thomas (2000), King Takahashi (2000). More detailed reviews are mentioned in the different sections.

Keywords

Circadian Rhythm Light Pulse Circadian Clock Neurospora Crassa Circadian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Åkerstedt, T. (1998). Is there an optimal sleep-wake pattern in shift work?. Scandinavian J. Work, Environment & Health, 24 (Suppl. 3), 18-27.Google Scholar
  2. Anderson, S., Somers, D., Millar, A., Hanson, K., Chory, J. & Kay, S. (1997). Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock. Plant Cell, 9, 1727-1743.PubMedGoogle Scholar
  3. Antoch, M, Song, E., Hang, A., Vitaterna, M, Zhao, Y., Wilsbacher, L., Sangoram, A., King, D., Pinto, L. & Takahashi, J (1997). Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell, 89,655-667.PubMedCrossRefGoogle Scholar
  4. Aoki, S., Kondo, T. & Ishiura, M. (1995). Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriology, 177, 5606-5611.Google Scholar
  5. Aoki, S., Kondo, T., Wada, H. & Ishiura, M. (1997). Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J. Bacteriology, 179, 5751-5755.Google Scholar
  6. Arbisi, P., Levine, A., Nerenberg, J. & Wolf, J. (1996). Seasonal alteration in taste detection and recognition threshold in seasonal affective disorder: The proximate source of carbohydrate craving. Psychiatry Res., 59, 171-182.PubMedCrossRefGoogle Scholar
  7. Argamaso, S., Froehlich, A., McCall, M, Nevo, E., Provencio, I. & Foster, R. (1995). Photopigments and circadian systems of vertebrates. Biophys. Chem., 56,3-11.PubMedCrossRefGoogle Scholar
  8. Aronson, B., Johnson, K., Loros, J. & Dunlap, J. (1994). Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science, 263,1570- 1572.CrossRefGoogle Scholar
  9. Arpaia, G., Loros, J., Dunlap, J., Morelli, G. & Macino, G. (1993). The interplay of light and the circadian clock: Independent dual regulation of clock-controlled gene ccg-2(eas). Plant Physiology, 102,1299-1305.PubMedCrossRefGoogle Scholar
  10. Ashkenazi, I., Hartman, H., Strulovitz, B. & Dar, O. (1975). Activity rhythms of enzymes in human red blood cell suspension. J. interdiscipl. Cycle Res., 6,291-301.CrossRefGoogle Scholar
  11. Baker, J. & Ranson, R. (1932). Factors affecting the breeding of the field mouse $íicrotus agrestis). I. Light. Proc.Roy.Soc, Series B, 110, 113-332.CrossRefGoogle Scholar
  12. Batschauer, A. (1998). Photoreceptors of higher plants. Planta, 206,479-492.PubMedCrossRefGoogle Scholar
  13. Bell-Pedersen, D. (2000). Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fungal Genetics & Biology, 29,1-18.CrossRefGoogle Scholar
  14. Bell-Pedersen, D., Dunlap, J. & Loros, J. (1996a). Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Molec. & Cellular Biol, 16,513-521.Google Scholar
  15. Bell-Pedersen, D., Garceau, N. & Loros, J. (1996b). Circadian rhythms in fungi. J. Genet., 75,387-401.CrossRefGoogle Scholar
  16. Blau, J. & Young, M. (1999). Cycling vrille expression is required for a functional Drosophila clock. Cell, 99,661-671.PubMedCrossRefGoogle Scholar
  17. Boulos, Z., Campbell, S., Lewy, A., Terman, M., Dijk, D. & Eastman, C. (1995). Light treatment for sleep disorders: Consensus report. VII. Jet lag. J. Biological Rhythms 10,167-176.CrossRefGoogle Scholar
  18. Bradbury, M.J. & Dement, WC, E. (1997). Serotonin-containing fibers in the suprachiasmatic hypothalamus attenuate light-induced phase delays in mice. Brain Research, 768,125-134.PubMedCrossRefGoogle Scholar
  19. Briggs, W. & Huala, E. (1999). Blue-light photoreceptors in higher plants. Annual Review of Cell & Developmental Biology, 15,33-62.CrossRefGoogle Scholar
  20. Brody, S. (1994). Circadian rhythms in microorganisms. Res. Microbiol, 145,499-501.PubMedCrossRefGoogle Scholar
  21. Brunner, D., Kraucht, K., Dijk, D., Leonhardt, G., Haug, H. & Wirz-Justice, A. (1996). Sleep electroencephalogram in seasonal affective disorder and in control women: Effects of midday light treatment and sleep deprivation. Biological Psychiatry, 40,485-496.PubMedCrossRefGoogle Scholar
  22. Bryant, T. (1972). Gas exchange in dry seeds: Circadian rhythmicity in the absence of DNA replication, transcription, and translation. Science, 178, 634 -636.PubMedCrossRefGoogle Scholar
  23. Bunney, W. & Bunney, B. (2000). Molecular clock genes in man and lower animals: Possible implications for circadian abnormalities in depression. Neuropsychopharmacology, 22,335-345PubMedCrossRefGoogle Scholar
  24. Cahill, G. & Hasegawa, M. (1997). Circadian oscillators in vertebrate retinal photoreceptor cells. Biological Signals, 6,191-2OO.PubMedCrossRefGoogle Scholar
  25. Campbell, S. & Murphy, P. (1998). Extraocular circadian phototransduction in humans. Science, 279,396-399.PubMedCrossRefGoogle Scholar
  26. Cardinali, D. (1998). The human body circadian: How the biological clock influences sleep and emotion. Ciencia e Cultura (Sao Paulo), 50, 172-177.Google Scholar
  27. Cashmore, A., Jarillo, J., Wu, Y. & Liu, D. (1999). Cryptochromes: Blue light receptors for plants and animals. Science, 284, 760-765.PubMedCrossRefGoogle Scholar
  28. Cassone, V. (1993). Melatonin in vertebrate circadian rhythm. Chronobiology International, 15,457-473.CrossRefGoogle Scholar
  29. Ceriani, M., Darlington, T., Staknis, D., Mas, P., Petti, A., Weitz, C. & Kay, S. (1999). Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science, 285, 553-568.PubMedCrossRefGoogle Scholar
  30. Chandrashekaran, M. & Engelmann, W. (1973). Early and late subjective night phase of the Drosophila rhythm require different energies of blue light for phase shifting. Zeitschr. Naturforschung 28c,750-753.Google Scholar
  31. Chen, T., Chen, T., Hung, L. & Huang, T. (1991). Circadian rhythm in amino acid uptake by Synechococcus RF-1. Plant Physiology, 97,55-59.PubMedCrossRefGoogle Scholar
  32. Chen, T., Pen, S. & Huang, T. (1993). Induction of nitrogen-fixing circadian rhythm Synechococcus RF-1 by light signals. Plant Science, 92,179-182.CrossRefGoogle Scholar
  33. Chow, T. & Tabita, F. (1994). Reciprocal light-dark transcriptional control of nif and rbc expression and light-dependent posttranslational control of nitrogenase activity in Synechococcus sp. strain RF-1. J. Bacteriology, 176, 6281-6285.Google Scholar
  34. Comolli, J., Taylor, W. & Hastings, J. (1994). An inhibitor of phosphorylation stops the circadian oscillator and blocks light-induced phase shifting in Gonyaulax polyedra. J. Biological Rhythms, 9,13-26CrossRefGoogle Scholar
  35. Crosthwait, S., Dunlap, J. & Loros, J. (1997). Neurospora wc-1 and wc-2: Transciption, photoresponses, and the origin of the circadian rhythmicity. Science, 276, 763-769.CrossRefGoogle Scholar
  36. Crosthwaite, S., Loros, J. & Dunlap, J. (1995). Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell, 81,1003-1012PubMedCrossRefGoogle Scholar
  37. Czeisler, C. (1995). The effect of light on the human circadian pacemaker. In Chadwick, D. & Ackrill, K. (eds), Circadian clocks and their adjustment, pp. 254-302. Chichester: John Wiley.Google Scholar
  38. Czeisler, C. & Dijk, D. (1995). Use of bright light to treat maladaptation to night shift work and circadian rhythm sleep disorders. J. Sleep Research, 4 (Suppl. 2), 70-73.CrossRefGoogle Scholar
  39. Czeisler, C, Kronauer, R., Allan, J., Duffy, J., Jewett, M., Brown, E. & Ronda, J. (1989). Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science, 244, 1328-1333.PubMedCrossRefGoogle Scholar
  40. Dalgleish, T., Rosen, K. & Marks, M. (1996). Rhythm and blues: The theory and treatment of seasonal affective disorder. British J. Clinical Psychology, 35,163-182.CrossRefGoogle Scholar
  41. David-Gray, Z., Janssen, J., DeGrip,W., Nevo, E. and Foster, R. (1998). Light detection in a 'blind' mammal. Nature Neuroscience, 1,655-656.PubMedCrossRefGoogle Scholar
  42. Deacon, S. & Arendt, J. (1996). Adapting to phase shifts. I. An experimental model for jet lag and shift work. Physiology & Behavior, 59, 665-673CrossRefGoogle Scholar
  43. Dharmananda, S. (1980). Studies on the circadian clock of Neurospora crassa: Light induced phase shifting. PhD thesis. University of California, Santa Cruz.Google Scholar
  44. Dijk, D., Boulos, Z., Eastman, C, Lewy, A., Campbell, S. & Terman, M. (1995). Light treatment for sleep disorders: Consensus report. II. Basic properties of circadian physiology and sleep regulation. J. Biological Rhythms. 10, 113-125.CrossRefGoogle Scholar
  45. Dowson-Day, M. & Millar, A. (1999). Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17,63-71.PubMedCrossRefGoogle Scholar
  46. Dunlap, J. (1996). Genetic and molecular analysis of circadian rhythms. Annu. Rev. Genetics., 30, 579-601.CrossRefGoogle Scholar
  47. Dunlap, J. (1999). Molecular bases for circadian clocks. Cell, 96,271-290.PubMedCrossRefGoogle Scholar
  48. Dunlap, J. (2000). An end in the beginning. Science, 280,1548-1550CrossRefGoogle Scholar
  49. Dunlap, J., Loros, J., Crosthwaite, S., Liu, Y., Garceau, N., Bell-Pedersen, D., Shinohara, M., Luo, C, Collett, M., Cole, A. & Heintzen, C. (1998). The circadian regulatory system in Neurospora. In Chaddick, M., Baumberg, S. D., Hodgson, D. & Phillips-Jones, M. (eds), Microbial Responses to Light and Time, pp. 279-295. Cambridge: University Press,Cambridge.Google Scholar
  50. Eastman, C, Boulos, Z., Terman, M., Campbell, S., Dijk, D. & Lewy, A. (1995). Light treatment for sleep disorders: Consensus report. VI. Shift work. J. Biological Rhythms, 10, 157-164.CrossRefGoogle Scholar
  51. Eastman, C, Martin, S. & Hebert, M. (2000). Failure of extraocular light to facilitate circadian rhythm reentrainment. Chronobiol. Intern., 17, 807-826.CrossRefGoogle Scholar
  52. Eastman, C, Stewart, K., Mahoney, M., Liu, L. & Fogg, L. (1994). Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. Sleep, 17, 535-543.PubMedGoogle Scholar
  53. Eastman, C., Young, M., Fogg, L., Liu, L. & Meaden, P. (1998). Bright light treatment of winter depression: A placebo-controlled trial. Archives General Psychiatry, 55, 883-889.CrossRefGoogle Scholar
  54. Edery, I. 1999. Role of postransciptional regulation in circadian clocks: Lessons from Drosophila. Chronobiol. Internal, 16, 377-414.Google Scholar
  55. Egan, E., Franklin, T., Hilderbrand-Chae, M., McNeil, G., Roberts, M., Schroeder, A., Zhang, X. & Jackson, F. (1999). An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. J. Neuroscl, 19,3665-3673.Google Scholar
  56. Emery, P., Stanewsky, R., Hall, J. & Rosbash, M. (2000). A unique circadian-rhythm photoreceptor.. Nature, 404,456-451.PubMedCrossRefGoogle Scholar
  57. Engelmann,W., Johnsson, A., Kobler, H. & Schimmel, M. (1978). Attenuation of the petal movement rhythm of Kalanchoe with light pulses. Physiol. Plant, 43, 68-76.CrossRefGoogle Scholar
  58. Enright, J. (1965). Synchronization and ranges of entrainment. In Aschoff, J. (ed.), Circadian clocks. Proceedings of the Feldafing summer school, 7-18 September 1964, pp. 112-124. Amsterdam: North-Holland Publishing Co.Google Scholar
  59. Esseveldt, L., Lehman, M. & Boer, G. (2000). The suprachiasmatic nucleus and the circadian timekeeping system revisited. Brain Research Reviews, 33,34-77.PubMedCrossRefGoogle Scholar
  60. Feldman, J. (1982). Genetic approaches to circadian clocks. Annu. Rev. Plant Physiol., 33, 583-608.CrossRefGoogle Scholar
  61. Fleissner, G. & Fleissner, G. (2002a). Retinal circadian rhythms. In Kumar, V. (ed.), Biological rhythms, pp. 71-82. New Delhi: Narosa Publ. House.Google Scholar
  62. Fleissner, G. & Fleissner, G. (2002b). Perception of natural Zeitgeber signals. In Kumar, V. (ed.), Biological rhythms, pp. 83-93. New Delhi: Narosa Publ. House.Google Scholar
  63. Folta, K. and Kaufman, L. (1999). Regions of the pea Lhcbl*4 promoter necessary for blue-light regulation in transgenic Arabidopsis. Plant Physiology, 120, 747-755.PubMedCrossRefGoogle Scholar
  64. Forger, D., Jewett, M. & Kronauer, R. (1999). A simpler model of the human circadian pacemaker. J. Biological Rhythms, 14, 532-537.Google Scholar
  65. Forsgren, E. (1935). Über die Rhythmikder Leberfunktion, des Stoffwechsels unddes Schlafes. Göteborg: Gumperts BokhandelGoogle Scholar
  66. Foster, R. & Helfrich-Förster, C. (2001). Photoreceptors for circadian clocks in mice and fruit flies. Phil. Trans. Roy. Soc. Sci. London. B, 356, 1-11..Google Scholar
  67. Foulkes, N., Cermakian, N., Whitmore, D. & Sassone-Corsi, P. (2000). Rhythmic transcription: The molecular basis of oscillatory melatonin synthesis. Novartis Foundation Symposium, 227, 5-14.PubMedCrossRefGoogle Scholar
  68. Freedman, M., Lucas, R., Soni, B., von Schantz, M, Munoz, M., David-Gray, Z. & Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 284, 502-504.PubMedCrossRefGoogle Scholar
  69. Giedke, H., Engelmann,W. & Reinhard, P. (1983). Free running circadian rest-activity cycle in normal environment. A case study. Sleep Research, 12,365.Google Scholar
  70. Golden, S., Ishiura, M, Johnson, C. H. & Kondo, T. (1997). Cyanobacterial circadian rhythms. Annu. Rev. Plant Physiol. Plant Mol Biol, 48, 327-354.PubMedCrossRefGoogle Scholar
  71. Golden, S., Tsinoremas, N., Liu, Y., Kutsuna, S., Lebedeva, N., Andersson, C., Aoki, S., Johnson, C, Ishiura, M. & Kondo, T. (1995). The quest for the cyanobacterial circadian clock. Plant Physiology, 108(2SuppL), 15.Google Scholar
  72. Grace, M., Chiba, A. and Menaker, M. (1999). Circadian control of photoreceptor outer segment membrane turnover in mice genetically incapable of melatonin synthesis. Visual Neuroscience, 16, 909-918.PubMedCrossRefGoogle Scholar
  73. Graw, P., Recker, S., Sand, L., Krauchi, K. & Wirz-Justice, A. (1999). Winter and summer outdoor light exposure in women with and without seasonal affective disorder., J. Affective Disorders 56,163-169.CrossRefGoogle Scholar
  74. Guillemette, J., Hebert, M., Paquet, J. & Dumont, M. (1998). Natural bright light exposure in the summer and winter in subjects with and without complaints of seasonal mood variations. Biological Psychiatry, 44,622-628.PubMedCrossRefGoogle Scholar
  75. Halaris, A. (1987). Chronobiology and psychiatric disorders. New York, Amsterdam, London: Elsevier.Google Scholar
  76. Hall, J. (1998). Molecular neurogenetics of biological rhythms. J. Neurogenetics, 12, 115-181.CrossRefGoogle Scholar
  77. Hastings, J. & Sweeney, B. (1957). On the mechanism of temperature independence in a biological clock. Proc. Natl. Acad. Sci. USA, 43, 804-811.PubMedCrossRefGoogle Scholar
  78. Hastings, J. & Sweeney, B. (1960). The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra. J. Gen. Physiol., 43, 697-706.CrossRefGoogle Scholar
  79. Helfrich-Förster, C. & Diez-Noguera, A. (1993). Use of a multioscillatory system to simulate experimental results obtained for the period-mutants of Drosophila melanogaster. J. Interdiscipl. CycleRes., 24,225-231.CrossRefGoogle Scholar
  80. Helfrich-Förster, C. & Engelmann,W. (2002). Photoreceptors for the circadian clock of the fruitfly. in Kumar, V. (ed.), Biological Rhythms, pp. 94-106. New Delhi: Narosa Publ. House, p. in press.Google Scholar
  81. Helfrich-Förster, C., Stengl, M. & Homberg, U. (1998). Organization of the circadian system in insects. Chronobiol. Internal, 15, 567-594.CrossRefGoogle Scholar
  82. Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J. and Stanewsky, R. (2001). The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron, 30,249-261.PubMedCrossRefGoogle Scholar
  83. Hennessey, T. & Field, C. (1991). Circadian rhythms in photosynthesis. Plant Physiol, 96, 831-836.PubMedCrossRefGoogle Scholar
  84. Hennessey, T. & Field, C. (1992). Evidence for multiple oscillators in bean plants. J. Biological Rhythms, 7, 105-113.CrossRefGoogle Scholar
  85. Herzog, E. & Block, G. (1999). Keeping an eye on retinal clocks. Chronobiology International 16, 229-247.PubMedCrossRefGoogle Scholar
  86. Hicks, K., Millar, A., Carre, I., Somers, D., Straume, M., Kay, S. & Meeks-Wagner, D. (1996). Conditional circadian dysfunction of the Arabidopsis early flowering 3 mutant. Science, 274, 790-792.PubMedCrossRefGoogle Scholar
  87. Hitomi, K., Okamoto, K., Daiyasu, H., Miyashita, H., Iwai, S., Ton, H., Ishiura, M. & Todo, T. (2000). Bacterial cryptochrome and photolyase: Characterization of two photolyase-like genes of Synechocystis sp. PCC68O3. Nucleic Acids Research, 28,2353-2362.PubMedCrossRefGoogle Scholar
  88. Hofbauer, A. and Buchner, E. (1989). Does Drosophila have seven eyes? Naturwiss., 76,335-336.CrossRefGoogle Scholar
  89. Hoffmann, K. (1981). The role of the pineal gland in the photoperiodic control of seasonal cycles in hamsters. In Follett, B. & Follett, D. (eds). Biological clocks in seasonal reproductive cycles, pp. 237-250. Bristol: Wright.Google Scholar
  90. Ibata, Y., Okamura, H., Tanaka, M, Tamada, Y., Hayashi, S., Iijima, N., Matsuda, T., Munekawa, K., Takamatsu, T., Hisa, Y., Shigeyoshi, Y. & Amaya, F. (1999). Functional morphology of the suprachiasmatic nucleus. Frontiers in Neuroendocrinology, 20,241-268.PubMedCrossRefGoogle Scholar
  91. Ikonomov, O., Stoynev, A. & Shisheva, A. (1998). Integrative coordination of circadian mammalian diversity: neuronal networks and peripheral clocks. Progress in Neurobiology, 54, 87-97.PubMedCrossRefGoogle Scholar
  92. Illnerova, H. and Sumova, A. (1997). Photic entrainment of the mammalian rhythm in melatonin production. J. Biological Rhythms, 12, 547-555.CrossRefGoogle Scholar
  93. Illnerova, H. and Vanecek, J. (1982). Two-oscillator structure of the pacemaker controlling the circadian rhythm of N-acetyltransferase in the rat pineal gland. J. Comp. Physiol, A145, 539-548.CrossRefGoogle Scholar
  94. Inouye, C. (1993). Circadian rhythms in peptides and their precursor messenger RNAs in the suprachiasmatic nucleus. In Nakagawa, H., Oomura, Y. & Nagai, K. (eds). Internal Symp. Osaka: New functional aspects of the suprachiasmatic nucleus of the hypothalamus, pp. 219-233. London: John Libbey & Co.Google Scholar
  95. Inouye, C, Okamoto, K., Ishiura, M. and Kondo, T. (1998). The action spectrum of phase shift by light signal in the circadian rhythm in cyanobacterium. Plant Cell Physiol, 39 (Suppl), S82.Google Scholar
  96. Ishikawa, T., Matsumoto, A., Kato, T., Togashi, S., Ryo, H., Ikenaga, M., Todo, T., Ueda, R. & Tanimura, T. (1999). DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes to Cells, 4, 57-65.PubMedCrossRefGoogle Scholar
  97. Ishiura, M, Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C., Tanabe, A., Golden, S., Johnson, C. & Kondo, T. (1998). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science, 281,1519-1523.PubMedCrossRefGoogle Scholar
  98. Iwasaki, H. & Dunlap, J. (2000). Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr. Opinion Microbiology, 3,189-196.CrossRefGoogle Scholar
  99. Iwasaki, H., Taniguchi, Y., M., I. & Kondo, T. (1999). Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. EMBO J., 18,1137-1145.PubMedCrossRefGoogle Scholar
  100. Iwasaki, H., Williams, S., Kitayama, Y., Ishiura, M., Golden, S. & Kondo, T. (2000). A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell , 101,223-233.PubMedCrossRefGoogle Scholar
  101. Jagota, A., de la Iglesia, H. & Schwartz, W. (2000). Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro.. Nature Neuroscience, 3, 372-376.PubMedCrossRefGoogle Scholar
  102. Jewett, M., Kronauer, R. & Megan, E. (1999). Interactive mathematical models of subjective alertness and cognitive throughput in humans.. J. Biological Rhythms, 14, 588-597.CrossRefGoogle Scholar
  103. Johnson, C, Golden, S. & Kondo, T. (1996). Circadian clocks in prokaryotes. Molecular Microbiology, 27,5-11.CrossRefGoogle Scholar
  104. Johnson, C., Golden, S. & Kondo, T. (1998). Adaptive significance of circadian programs in cyanobacteria. Trends Microbiology, 6, 407-410.CrossRefGoogle Scholar
  105. Johnson, C., Knight, M., Kondo, T., Masson, P., Sedbrook, J., Haley, A. & Trewavas, A. (1995). Circadian oscillations of cytosolic and chloroplastic free calcium in plants.. Science, 269, 1863-1865.PubMedCrossRefGoogle Scholar
  106. Johnsson, A. & Karlsson, H. (1972). A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. J. Theoretical Biology, 36,153-174.CrossRefGoogle Scholar
  107. Jones, T., Tucker, D. & Ort, D. (1998). Chilling delays circadian pattern of sucrose phosphat synthase and nitrate reductase activity in tomato. Plant Physiology, 118,149-158.PubMedCrossRefGoogle Scholar
  108. Jouve, L., Greppin, H. & Degli Agosti, R. (1998). Arabidopsis thaliana floral stem elongation: Evidence for an endogenous circadian rhythm. Plant Physiol. Biochem. (Paris), 36,469-472.CrossRefGoogle Scholar
  109. Kai, H., Arai, T. & Yasuda, F. (1999). Accomplishment of time-interval activation of esterase A4 by simple removal of pin fraction. Chronobiology International, 16, 51-58.PubMedCrossRefGoogle Scholar
  110. Kai, H., Kotani, Y., Miao, Y. & Azuma, M. (1995). Time Interval Measuring Enzyme for Resumption of Embryonic Development in the Silkworm, Bombyx mori. J. Insect Physiol., 41,905-910.Google Scholar
  111. Karakashian, M. & Schweiger, H. (1976). Circadian properties of the rhythmic system in individual nucleated and enucleated cells of Acetabularia mediterranea. Exper. Cell Res., 97, 366-377.CrossRefGoogle Scholar
  112. King, D. & Takahashi, J. (2000). Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neuroscience, 23, 713-42.CrossRefGoogle Scholar
  113. King, D., Zhase, Y., Sangoram, A., Wilsbacher, L., Tanaka, M., Antoch, M., Stewes, T., Vitaterna, M, Kornhauser, J., Lowry, P., Turek, F. & Takahashi, J. (1997). Positional cloning of the mouse circadian clock gene. Cell, 89,641-652.PubMedCrossRefGoogle Scholar
  114. Klein, D., Moore, R. & Reppert, S. (1991). Suprachiasmatic nucleus: The mind's clock. New York & Oxford: Oxford University Press.Google Scholar
  115. Kokkola, T. & Laitinen, J. (1998). Melatonin receptor genes. Ann. Medicine., 30, 88-94.CrossRefGoogle Scholar
  116. Kolar, C, Fejes, E., Adam, E., Schaefer, E., Kay, S. & Nagy, F. (1998). Transcription of Arabidopsis and wheat Cab genes in single tobacco transgenic seedlings exhibits independent rhythms in a developmentally regulated fashion. Plant J., 13, 563-569PubMedCrossRefGoogle Scholar
  117. Kondo, T. & Ishiura, M. (2000). The circadian clock of cyanobacteria. BioEssays, 22,10-15.PubMedCrossRefGoogle Scholar
  118. Kondo, T., Johnson, C. & Hastings, J. (1991). Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain I: Cells in darkness. Plant Physiology, 95,197-205PubMedCrossRefGoogle Scholar
  119. Kondo, T., Strayer, C, Kulkarni, R., Taylor, W., Ishiura, M, Golden, S. & Johnson, C. (1993). Circadian rhythms in prokaryotes: Luciferase as a reporter of circadian gene expression in cyanobacteria. Proc. NatlAcad. Sci. USA, 90, 5672-5676.CrossRefGoogle Scholar
  120. Kondo, T., Tsinoremas, N., Golden, S., Johnson, C, Kutsuna, S. & Ishiura, M. (1994). Circadian clock mutants of cyanobacteria. Science, 266,1233-1236.PubMedCrossRefGoogle Scholar
  121. Koorengevel, K., Beersma, D., Gordijn, M, den Boer, J. & van den Hoofdakker, R. (2000). Body temperature and mood variations during forced desynchronization in winter depression: A preliminary report. Biological Psychiatry, 47,355-358.CrossRefGoogle Scholar
  122. Kreps, J. & Kay, S. (1997). Coordination of plant metabolism and development by the circadian clock. Plant Cell, 9,1235-1244.PubMedCrossRefGoogle Scholar
  123. Kreps, J., Muramatsu, T., Furuya, M. & Kay, S. (2000). Fluorescent differential display identifies circadian clock-regulated genes in Arabidopsis thaliana. J. Biological Rhythms, 121,208-217.CrossRefGoogle Scholar
  124. Kumar, A., Munehiko, A. & Mukato, S. (1999). Light-dependent and rhythmic psbA transcripts in homologous/heterologous cyanobacterial cells. Biochem. Biophys. Res. Comm., 255,47-53.CrossRefGoogle Scholar
  125. Laakso, M., Hätönen, T., Stenberg, D., Alila, A. & Smith, S. (1993). The human circadian response to light -strong and weak resetting. J. Biological Rhythms, 8,351-360.CrossRefGoogle Scholar
  126. Lakin-Thomas, P. (1998). Choline depletion, frq mutations, and temperature compensation of the circadian rhythm in Neurospora crassa. J, Biological Rhythms, 13,268-277CrossRefGoogle Scholar
  127. Lakin-Thomas, P. (2000). Circadian rhythms: new functions for old clock genes. Trends Genetics, 16, 135-142.CrossRefGoogle Scholar
  128. Lakin-Thomas, P. & Brody, S. (2000). Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc. Nail Acad. Sci. USA, 97,256-261.CrossRefGoogle Scholar
  129. Lakin-Thomas, P., Cote, G. & Brody, S. (1990). Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit. Revs Microbiology, 17, 365 ‡I6.CrossRefGoogle Scholar
  130. Lam, R. & Levitan, R. (2000). Pathophysiology of seasonal affective disorder: a review.. J. Psychiatry Neurosci., 25,469-480.PubMedGoogle Scholar
  131. Lam, R., Terman, M. and Wirz-Justice, A. (1997). Light therapy for depressive disorders: Indications and efficacy. In Rush, A. (ed.), Mood disorders: Systematic medication management. Modern Problems of Pharmacopsychiatry, pp. 215-234. Basel & London: KargerGoogle Scholar
  132. Lee, K., Loros, J. & Dunlap, J. (2000). Interconnected feedback loops in the Neurospora circadian system. Science, 289, 107-110.PubMedCrossRefGoogle Scholar
  133. Lee, T., Chan, C, Paterson, J., Janzen, H. & Blashko, C. (1997). Spectral properties of phototherapy for seasonal affective disorder: A meta-analysis. Acta Psychiatrica Scandinavica, 96,117-121PubMedCrossRefGoogle Scholar
  134. Leibenluft, E., Turner, E., Feldman-Naim, S., Schwartz, P., Wehr, T. & Rosenthal, N. (1996). Light therapy in patients with rapid cycling bipolar disorder: Preliminary results. Psychopharmacology Bull., 3/, 705-710.Google Scholar
  135. Leloup, J. & Goldbeter, A. (2001). A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse.. Amer. J. Physiol. (Regulatory, Integrative and Comparative Physiology).Google Scholar
  136. Lema, M., Golombek, D. & Echave, J. (2000). Delay model of the circadian pacemaker. J. theor. Biol, 204, 565 - 573.PubMedCrossRefGoogle Scholar
  137. Levitt, A., Wesson, V., Joffe, R., Maunder, R. & King, E. (1996). A controlled comparison of light box and head-mounted units in the treatment of seasonal depression. J. Clin. Psychiatry, 57,105-110.PubMedGoogle Scholar
  138. Lewis, R. (1999). Control system models for the circadian clock of the New Zealand Weta, Hemideina thoracia (Orthoptera: Stenopelmatidae). J. Biological Rhythms, 14,480-485CrossRefGoogle Scholar
  139. Lewy, A. & Sack, R. (1997). Exogenous melatonin's phase-shifting effects on the endogenous melatonin profile in sighted humans: A brief review and critique of the literature. J. Biological Rhythms, 12,588-594.CrossRefGoogle Scholar
  140. Lewy, A., Bauer, V., Cutler, N., Sack, R., Ahmed, S., Thomas, K., Blood, M. and Latham-Jackson, J. (1998). Morning vs evening light treatment of patients with winter depression. Arch. General Psychiatry, 55, 890-896.CrossRefGoogle Scholar
  141. Lin, R., Chou, H. and Huang, T. (1999). Priority of light/dark entrainment over temperature in setting the circadian rhythms of the prokaryote Synechococcus RF-1. Planta, 209,202-206.PubMedCrossRefGoogle Scholar
  142. Linden, H., Ballario, P. & Macino, G. (1997). Review: Blue light regulation in Neurospora crassa. Fungal Genetics Biology, 22,141-150.CrossRefGoogle Scholar
  143. Linden, H., Ballario, P., Arpaia, G. & Macino, G. (1999). Seeing the light: News in Neurospora blue light signal transduction. Adv. in Genetics 41,35-54.CrossRefGoogle Scholar
  144. Liu, Y., Garceau, N., Loros, J. & Dunlap, J. (1997). Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock. Cell 89,477-486.PubMedCrossRefGoogle Scholar
  145. Liu, Y., Golden, S., Kondo, T., Ishiura, M. & Johnson, C. (1995). Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J. Bacteriology, 177,2080-2086.Google Scholar
  146. Liu, Y., Merrow, M., Loros, J. & Dunlap, J. (1998). How temperature changes reset a circadian oscillator. Science, 281, 825-829.PubMedCrossRefGoogle Scholar
  147. Liu, Z., Taub, C. & McClung, C. (1996). Identification of an Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock. Plant Physiology, 112,43-51.PubMedCrossRefGoogle Scholar
  148. Loros, J. & Feldman, J. (1986). Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J. Biological Rhythms, 1,187-198.CrossRefGoogle Scholar
  149. Luboshitzky, R. & Lavie, P. (1999). Melatonin and sex hormone interrelationships - A review. J. Pediatric Endocrinology Metabolism, 12, 355-362.Google Scholar
  150. Lucas, R. & Foster, R. (1999). Photoentrainment in mammals: a role for cryptochrome?. J. Biological Rhythms, 14, 4-10.CrossRefGoogle Scholar
  151. Lumsden, P. & Millar, A. (1998). Biological rhythms andphotoperiodism in plants. Environmental Plant Biology. Oxford, Washington, D.C.: Bios Scientific Publishers.Google Scholar
  152. Macino, G., Arpaia, G., Linden, H. & Ballario, P. (1998). Responses to blue light in Neurospora crassa. In Chaddick, M., Baumberg, S., Hodgson, D. & Phillips- Jones, M. (eds), Microbial Responses to Light and Time, pp. 213-224. Cambridge: Cambridge University Press.Google Scholar
  153. Marchant, E. & Mistlberger, R. (1997). Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Res., 765,273-282.PubMedCrossRefGoogle Scholar
  154. Martin, S. and Eastman, C. (1998). Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work. Sleep, 21,154-165.PubMedGoogle Scholar
  155. McClung, C. (1993). The higher plant Arabidopsis thaliana as a model system for the molecular analysis of circadian rhythms. In Young, M. (ed.), Molecular genetics of biological rhythms. Vol. 4 of Cellular Clocks Series (Edmunds, L. N., ed.), pp. 1-35. New York, Basel, Hong Kong: Marcel Dekker.Google Scholar
  156. McClung, C. (1997). Regulation of catalases in Arabidopsis. Free Radical Biology & Medicine, 23, 489-496.CrossRefGoogle Scholar
  157. McClung, C, Hsu, M., Painter, J., Gagne, J., Karlsberg, S. and Salome, P. (2000). Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiology, 123,381-391.PubMedCrossRefGoogle Scholar
  158. Meesters, Y. (1998). Case study: Dawn simulation as maintenance treatment in a nine-year-old patient with seasonal affective disorder. J. American Acad. Child & Adolescent Psychiatry, 37,986-988.CrossRefGoogle Scholar
  159. Meesters, Y., Beersma, D., Bouhuys, A. and van den Hoofdakker, R. (1999). Prophylactic treatment of seasonal affective disorder (SAD) by using light visors: Bright white or infrared light?. Biological Psychiatry, 46,239-246.PubMedCrossRefGoogle Scholar
  160. Meesters, Y., Jansen, J., Beersma, D., Bouhuys, A. & van den Hoofdakker, R. (1995). Light therapy for seasonal affective disorder: The effects of timing. British J. Psychiatry, 166,607-612.CrossRefGoogle Scholar
  161. Meijer, J., Watanabe, K. & Detari, L. (1996). Light entrainment of the mammalian biological clock. Progr. Brain Research, 111, 175-190.CrossRefGoogle Scholar
  162. Menaker, M., Moreira, L. & Tosini, G. (1997). Evolution of circadian organization in vertebrates. Brazilian J. Medical Biological Res. 30,305-313.Google Scholar
  163. Merrow, M., Brunner, M. & Roenneberg, T. (1999). Assignment of circadian function for the Neurospora clock gene frequency. Nature, 399, 584-586.PubMedCrossRefGoogle Scholar
  164. Miles, L., Raynal, D. & Wilson, M. (1977). Blind man living in normal society has circadian rhythm of 24.9 hours. Science, 198,421-423.PubMedCrossRefGoogle Scholar
  165. Millar, A. (1998). Molecular intrigue between phototransduction and the circadian clock. Ann. Botany, 57,581-587.CrossRefGoogle Scholar
  166. Millar, A. (1999). Biological clocks in Arabidopsis thaliana. New Phytologist, 141,175-197.CrossRefGoogle Scholar
  167. Millar, A. and Kay, S. (1996). Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. NatlAcad. Sci. USA, 93,15491-15496.CrossRefGoogle Scholar
  168. Millar, A. and Kay, S. (1997). The genetics of phototransduction and circadian rhythms in Arabidopsis. Bioessays, 19,209-214.PubMedCrossRefGoogle Scholar
  169. Millar, A., Carre, I., Strayer, C, Chua, N. & A., K. (1995a). Circadian Clock Mutants in Arabidopsis identified by luciferase imaging. Science, 267,1161-1163.PubMedCrossRefGoogle Scholar
  170. Millar, A., Straume, M., Chory, J., Chua, N. & Kay, S. (1995b). The Regulation of Circadian Period by Phototransduction Pathways in Arabidopsis. Science, 267,1163-1166.PubMedCrossRefGoogle Scholar
  171. Minors, D. & Waterhouse, J. (1981). Circadian rhythms and the human. Bristol, London, Boston: Wright.Google Scholar
  172. Minors, D., Waterhouse, J. & Wirz-Justice, A. (1991). A human phase response curve to light. Neuroscience Lett, 133, 36-40.CrossRefGoogle Scholar
  173. Mistlberger, R., de Groot, J. & Marchant, E. (1996). Discrimination of circadian phase in intact and suprachiasmatic nuclei ablated rats. Brain Res., 96,12-18.CrossRefGoogle Scholar
  174. Miyamoto, Y. & Sancar, A. (1998). Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl Acad. Sciences USA, 95, 6097-6102.CrossRefGoogle Scholar
  175. Moore-Ede, M., Sulzman, F. & Fuller, C. (1982). The clocks that time us. Cambridge, Mass. & London: Harvard Univ. Press.Google Scholar
  176. Moore, R. (1997). Chemical neuroanatomy of the mammalian circadian system. In P. Redfern, P. & Lemmer, B. (eds), Physiology and Pharmacology of biological rhythms, chapter 4, pp. 79-93. Berlin, Heidelberg, New York: Springer.Google Scholar
  177. Moore, R., Speh, J. & Card, J. (1995). The rhd originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol, 352,351-366.PubMedCrossRefGoogle Scholar
  178. Morin, L. (1994). The circadian visual system. Brain Research Rev., 67,102-127.CrossRefGoogle Scholar
  179. Morse, D., Hastings, J. & Roenneberg, T. (1994). Different phase responses of two circadian oscillators in Gonyaulax. J. Biological Rhythms, 9,263-274.CrossRefGoogle Scholar
  180. Nakashima, H. & Onai, K. (1996). The circadian conidiation rhythm in Neurospora crassa. Semin. Cell Developm. Biol. 7,165-174.Google Scholar
  181. Nathan, P., Burrows, G. and Norman, T. (1999). Melatonin sensitivity to dim white light in affective disorders. Neuropsychopharmacology, 21, 408-413.PubMedCrossRefGoogle Scholar
  182. Neumeister, A., Praschak-Rieder, N., Hesselmann, B., Rao, M., Glueck, J. & Kasper, S. (1997). Effects of tryptophan depletion on drug-free patients with seasonal affective disorder during a stable response to bright light therapy. Arch. Gen. Psychiatry, 54, 133-138.PubMedCrossRefGoogle Scholar
  183. Neumeister, A., Turner, E., Matthews, J., Postolache, T., Barnett, R., Rauh, M., Vetticad, R., Kasper, S. & Rosenthal, N. (1998). Effects of tryptophan depletion vs catecholamine depletion in patients with seasonal affective disorder in remission with light therapy. Arch. Gen. Psychiatry, 55, 524-530.PubMedCrossRefGoogle Scholar
  184. Nickla, D., Wildsoet, C. & Wallman, J. (1998). The circadian rhythm in intraocular pressure and its relation to diurnal ocular growth changes in chicks. Exp. Eye Res., 66,183-193.PubMedCrossRefGoogle Scholar
  185. Ninnemann, H. (1984). The nitrate reductase system, in H. Senger (ed.), Blue light effects in biological systems, pp. 95-109. Berlin: Springer.CrossRefGoogle Scholar
  186. Nishiwaki, T., Iwasaki, H., Ishiura, M. & Kondo, T. (2000). Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc, NatlAcad. Sci. USA, 97,495 t99.CrossRefGoogle Scholar
  187. Olesiak, W., Ungar, A., Johnson, C. & Hastings, J. (1987). Are protein synthesis inhibition and phase shifting of the circadian clock in Gonyaulax correlated?. J. Biological Rhythms.Google Scholar
  188. Oltmanns, O. (1960). Über den Einfluss der Temperatur auf die endogene Tagesrhythmik und die Blühinduktion bei der Kurztagpflanze Kalanchoe blossfeldiana. Planta, 54,233-264.CrossRefGoogle Scholar
  189. Ouyang, Y., Andersson, C, Kondo, T., Golden, S. & Johnson, C. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proc. NatlAcad. Sci. USA, 95, 8660-8664.CrossRefGoogle Scholar
  190. Palchikov, V., Zolotarev, D., Danielenko, K. & Putilov, A. (1997). Effects of the seasons and of bright light administered at different times of day on sleep EEG and mood in patients with seasonal affective disorder. Biological Rhythm Res., 28, 166-184.CrossRefGoogle Scholar
  191. Park, D., Somers, D., Kim, Y., Choy, Y., Lim, K, Soh, M., Kim, H., Kay, S. & Nam, H. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIG ANTE A gene. Science, 285,1579-1582.PubMedCrossRefGoogle Scholar
  192. Partonen, T. (1998). Short note: Extrapineal melatonin and exogenous serotonin in seasonal affective disorder. Medical Hypotheses, 51,441-442.PubMedCrossRefGoogle Scholar
  193. Partonen, T. & Lonnqvist, J. (1996). Prevention of winter seasonal affective disorder by bright-light treatment.. Psychological Medicine, 26,1075-80PubMedCrossRefGoogle Scholar
  194. Peterson, E. (1981a). Dynamic response of a circadian pacemaker. Recovery from extended light exposure. Biol. Cybern., 40,171-179.CrossRefGoogle Scholar
  195. Peterson, E. (1981b). Dynamic response of a circadian pacemaker. Recovery from light pulse perturbations. Biol. Cybern., 40,181-194.CrossRefGoogle Scholar
  196. Piechulla, B. (1999). Circadian expression of the light-harvesting complex protein genes in plants. Chronobiol. Internal, 6,115-128CrossRefGoogle Scholar
  197. Pilgrim, M., Caspar, T., Quail, P. & McClung, C. (1993). Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Molecular Biology 23,349-364PubMedCrossRefGoogle Scholar
  198. Pittendrigh, C. (1965). On the mechanism of the entrainment of a circadian rhythm by light cycles. In Aschoff, J. (ed.), pp. 277-297 Circadian clocks. Amsterdam: North-Holland Publishing Co.Google Scholar
  199. Pittendrigh, C. & Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. J. Comparative Physiology, AIO6, 333-355CrossRefGoogle Scholar
  200. Provencio, I. & Foster, R. (1995). Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res., 694,183-190PubMedCrossRefGoogle Scholar
  201. Provencio, I., Rodriguez, I., Jiang, G., Hayes,W., Moreira, E. & Rollag, M. (2000). A novel human opsin in the inner retina. J. Neuroscience, 20,600-605PubMedGoogle Scholar
  202. Rea, M. (1998). Photic entrainment of circadian rhythms in rodents. Chronobiol. Internal, 15,395—423Google Scholar
  203. Redfern, P., Minors, D. & Waterhouse, J. 1994. Circadian rhythms, jet lag, and chronobiotics: An overview. Chronobiol. Internal, 11,253-265.CrossRefGoogle Scholar
  204. Reppert, S. & Weaver, D. (2000). Comparing clockworks: Mouse versus fly. J. Biological Rhythms, 15, 357-364CrossRefGoogle Scholar
  205. Roenneberg, T. (1996). The complex circadian system of Gonyaulax polyedra. Plant Physiology, 96, 733-737.CrossRefGoogle Scholar
  206. Roenneberg, T. & Foster, R. (1997). Twilight times: light and the circadian system. Photochem. Photobiol, 66, 549-61.PubMedCrossRefGoogle Scholar
  207. Roenneberg, T. & Hastings, J. (1988). Two photoreceptors influence the circadian clock of a unicellular alga. Naturwiss., 75,206-207PubMedCrossRefGoogle Scholar
  208. Roenneberg, T. and Mittag, M. (1996). The circadian program of algae. Seminar Cell. Developm. Biology, 7, 753-763.CrossRefGoogle Scholar
  209. Roenneberg, T. & Taylor, W. (1994). Light induced phase responses in Gonyaulax are drastically altered by creatine. J. Biological Rhythms 9,1-12CrossRefGoogle Scholar
  210. Rosenthal, N. & Oren, D. (1995). Light therapy. In Gabbard. G. (ed.), Treatments of psychiatric disorders. 2nd ed. Vol. 1 and 2 of Proc. Internal Congr. Chronobiol. Paris 7-11 September 1997, pp. 1263-1273. Washington, D.C.: Am. Psych. Press.Google Scholar
  211. Ruberg, F., Skene, D., Hanifín, J., Rollag, M., English, J., Arendt, J. & Brainard, G. (1996). Melatonin regulation in humans with color vision deficiencies. J. Clin. Endocrin. Metabol, 81,2980-2985.CrossRefGoogle Scholar
  212. Rusak, B. and Zucker, I. (1979). Neural regulation of circadian rhythms. Physiol. Rev., 59,449-526.PubMedGoogle Scholar
  213. Russo, V. (1986). Are carotenoids the blue light photoreceptor in the photoinduction of protoperithecia in Neurospora crassa?. Planta, 168, 56-60.CrossRefGoogle Scholar
  214. Russo, V. 1988. Blue light induces circadian rhythms in the bd mutant of Neurospora: double mutants bd,wc-1 and bd,wc-2 are blind. J. Photochem. Photobiol. B 2, 59-65.CrossRefGoogle Scholar
  215. Salvador, M., Klein, U. & Bogorad, L. (1998). Endogenous fluctuations of DNA topology in the chloroplast of Chlamydomonas reinhardtii. Molecul. Cellular Biol, 18, 7235-7242.Google Scholar
  216. Samel, A. & Wegmann, H. (1997). Bright light: A countermeasure for jet lag? Chronobiol Internal, 14, 173-183.CrossRefGoogle Scholar
  217. Samel, A., Wegmann, H. & Vejvoda, M. (1995). Jet lag and sleepiness in aircrew. J. Sleep Res., 4 (Suppl.2), 30-36.PubMedCrossRefGoogle Scholar
  218. Schmitz, O., Katayama, M.,Williams, S., Kondo, T. & Golden, S. (2000). CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science, 289, 765-768.PubMedCrossRefGoogle Scholar
  219. Schwartz, P., Brown, C‚ Wehr, T. & Rosenthal, N. (1996). Winter seasonal affective disorder: A follow-up study of the first 59 patients of the National Institute of Mental Health Seasonal Studies Program. American J. Psychiatry, 753,1028-1036.Google Scholar
  220. Sehgal, A., Ousley, A., Yang, Z., Chen, Y. & Schotland, P. (1999). What makes the circadian clock tick: genes that keep time? Recent Progr. Hormone Res., 54,61-84.PubMedGoogle Scholar
  221. Selby, C.P. & Sancar, A. (1999). A third member of the photolyase/blue-light photoreceptor family in Drosophila: A putative circdain photoreceptor. Photochem. Photobiol. 69,105-107.PubMedCrossRefGoogle Scholar
  222. Shanahan, T., Zeitzer, J. and Czeisler, C. (1997). Resetting the melatonin rhythm with light in humans. J. Biological Rhythms, 12, 556-567.CrossRefGoogle Scholar
  223. Silver, R. & Moore, R. (1998). Special issue on suprachiasmatic nucleus. Chronobiol. Internat, 15, VII-X and 395 ff.CrossRefGoogle Scholar
  224. Somers, D., Schultz, T., Milnamow, M. & Kay, S. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 101, 319-329.PubMedCrossRefGoogle Scholar
  225. Somers, D., Webb, A., Pearson, M. & Kay, S. (1998). The short-period mutant, tocl-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125,485-494.PubMedGoogle Scholar
  226. Soni, B., Philp, A., Knox, B. & Foster, R. (1998). Novel retinal photoreceptors. Nature, 394, 27-28.PubMedCrossRefGoogle Scholar
  227. Staiger, D. & Heintzen, C. (1999). The circadian system of Arabidopsis thaliana: Forward and reverse genetic approaches. Chronobiology Internat, 16,1-16.CrossRefGoogle Scholar
  228. Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S., Rosbash, M. & Hall, J. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell, 95,681-692.PubMedCrossRefGoogle Scholar
  229. Steiner, M.,Werstiuk, E. & Seggie, J. (1987). Dysregulation of neuroendocrine crossroads: Depression, circadian rhythms and the retina - a hypothesis. Progr. Neuro-Psychopharmacol. Biological Psychiatry, 11, 267-278.CrossRefGoogle Scholar
  230. Steinlechner, S. (1992). Melatonin: an endocrine signal for the night lenght. Verh. Dtsch. Zool. Ges, 85, 217-229.Google Scholar
  231. Stephan, F., Swann, J. & Sisk, C. (1979). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav. Neural Biol, 25, 545-554.PubMedCrossRefGoogle Scholar
  232. Strayer, C, Schultz, T., Raman, R., Somers, D., Mas, P., Panda, S., Kreps, J. & Kay, S. (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 289, 768-771.PubMedCrossRefGoogle Scholar
  233. Swedo, S., Lowe, C. & Rosenthal, N. (1998). Case series: Pediatric seasonal affective disorder. A follow-up report. J. American Academy of Child & Adolescent Psychiatry, 37, 218-220.CrossRefGoogle Scholar
  234. Tassi, P., Pellerin, N., Moessinger, M., Hoeft, A. & Muzet, A. (2000). Visual resolution in humans fluctuates over the 24h period. Chronobiol. Internat, 17,187-195.CrossRefGoogle Scholar
  235. Teng, C., Akerman, D., Cordas, T., Kasper, S. & Vieira, A. (1995). Seasonal affective disorder in a tropical country: A case report. Psychiatry Res, 56, 11-15.PubMedCrossRefGoogle Scholar
  236. Terman, J. & Terman, M. (1999). Photopic and scotopic light detection in patients with seasonal affective disorder and control subjects. Biological Psychiatry, 46, 1642-1648.PubMedCrossRefGoogle Scholar
  237. Terman, M., Amira, L., Terman, J. & Ross, D. (1996). Predictors of response and nonresponse to light treatment for winter depression. Am. J. Psychiatry, 153,1423-1429.PubMedGoogle Scholar
  238. Thain, S., Hall, A. & Millar, A. (2000). Functional independence of circadian clocks that regulate plant gene expression. Curr. Biology, 10,951-956.CrossRefGoogle Scholar
  239. Thalen, B., Kjellman, B., Morkrid, L., Wibom, R. & Wetterberg, L. (1995). Light treatment in seasonal and nonseasonal depression. Acta Psychiatrica Scandinavica, 91,352-360.PubMedCrossRefGoogle Scholar
  240. Thompson, C., Childs, P., Martin, N., Rodin, I. and Smythe, P. 1997. Effects of morning phototherapy on circadian markers in seasonal affective disorder. British J. Psychiatry, 170,431-435.CrossRefGoogle Scholar
  241. Thorell, L., Kjellman, B., Arned, M., Lindwall-Sundel, K., Walinder, J. & Wetterberg, L. (1999). Light treatment of seasonal affective disorder in combination with citalopram or placebo with 1 year follow-up. Internat. Clin. Psychopharmacol, 14 (Suppl.2), S7-S11.Google Scholar
  242. Tosini, G. & Menaker, M. (1996). Circadian rhythms in cultured mammalian retina.. Science 272, 419-421.PubMedCrossRefGoogle Scholar
  243. Touitou, Y. (1998). Biological clocks: Mechanisms and applications. Proc. Internat. Congr. Chronobiology Paris 7-11 September 1997. Amstedam: Elsevier.Google Scholar
  244. Visser, E., Beersma, D. & Daan, S. (1999). Melatonin suppression by light in humans is maximal when the nasal part of the retina is illuminated. J. Biological Rhythms, 14,116-121.CrossRefGoogle Scholar
  245. Webb, A. (1998). Stomatal rhythms. In Lumsden, P. & Millar, A. (eds), Biological rhythms and photoperiodism in plants, pp. 69-79. Bios Scientific Publishers.Google Scholar
  246. Wehr, T. (1997). Melatonin and seasonal rhythms. J. Biological Rhythms, 12, 518-527.CrossRefGoogle Scholar
  247. Welsh, D., Logothetis, D., Meister, M. & Reppert, S. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14, 697-706.PubMedCrossRefGoogle Scholar
  248. Wever, R. (1979). The circadian system of man. New York: Springer.Google Scholar
  249. Wever, R. (1989). Light effects on human circadian rhythms: A review of recent Andechs experiments. J. Biological Rhythms, 4,161-186.Google Scholar
  250. Whitelam, G. & Devlin, P. (1998). Light signalling in Arabidopsis. Plant Physiol Biochem. 36, 125-133.CrossRefGoogle Scholar
  251. Winfree, A. (1970). Integrated view of resetting a circadian clock. J. Theor. Biol, 28,327-374.PubMedCrossRefGoogle Scholar
  252. Winfree, A. (1986). The timing of biological clocks. New York: Scientific American Books, Inc.Google Scholar
  253. Wirz-Justice, A., Graw, P., Krauchi, K., Sarrafzadeh, A., English, J., Arendt, J. & Sand, L. (1996). 'Natural' light treatment of seasonal affective disorder. J. Affective Disorders, 37, 109-120.CrossRefGoogle Scholar
  254. Yanovsky, M., Mazzella, M. & Casal, J. (2000). A quadruple photoreceptor mutant still keeps track of time. Curr. Biology, 10, 1013-1015.CrossRefGoogle Scholar
  255. Young, M. (1998). The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 67,135-152.PubMedCrossRefGoogle Scholar
  256. Young, R. (1976). Visual cells and the concept of renewal. Investigative Ophthalmol, 15,700-725.Google Scholar
  257. Zeitzer, J., Kronauer, R. & Czeisler, C. (1997). Photopic transduction implicated in human circadian entrainment. Neuroscience Letters, 232,35-138.CrossRefGoogle Scholar
  258. Zhong, H. and McClung, C. (1996). The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Molecul Gen. Genetics, 251,196-203.Google Scholar
  259. Zhong, H., Painter, J., Salome, P., Straume, M. & McClung, C. (1998). Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings. Plant Cell, 10,2005-2017.PubMedGoogle Scholar
  260. Zhong, H., Resnick, A., Straume, M. & McClung, C. (1997). Effects of synergistic signaling by phytochrome A and cryptochromel on circadian clock-regulated catalase expression. Plant Cell 9, 947-955.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Anders Johnsson
    • 1
  • Wolfgang Engelmann
    • 2
  1. 1.Department of Physics, NTNUNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Institut für BotanikUniversität TübingenTübingenGermany

Personalised recommendations