Skip to main content

Vitamin D

  • Chapter
Photobiology
  • 250 Accesses

Abstract

PHOTOBIOLOGICAL AND ECOLOGICAL ASPECTS

1. INTRODUCTION

As a young boy I was forced to swallow a spoonful of cod liver oil every day. I was told that it contained vitamin D and that I had to eat it to get good bones in my body. I did not wonder why it was in the cod and how it got there. In fact I did not started to ask such questions until a few years ago. For some of the questions I have so far found no good answers. I learnt some surprising things, for instance that vitamin D is not really a vitamin in the strict sense, and that the cod can hardly make any of it at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abe, E., Miyaura, C, Sakagami, H., Takeda, M, Konno, K., Yamazaki, ?, Yoshiki, S. & Suda, T. (1981). Differentiation of mouse myeloid leukemia cells induced by 1 a,25-dihydroxyvitamin D3. Proc. Acad Sci. USA, 78, 4990-4994..

    Article  CAS  Google Scholar 

  • Ashok A., Rao, D.S. & Raghuramulu, N. (1998). Vitamin D is not an essential nutrient for rora (Labeo rohitä) as a representative of freshwater fish. J. Nutrit Sci. Vitaminol., 44,195-205.

    Article  CAS  Google Scholar 

  • Ashok, A., Rao, D.S., Chennaiah, S. & Raghuramulu, N. (1999). Vitamin D2 is not biologically active for rora (Labeo rohita) as vitamin D3. J. Nutrit. Sci. Vitaminol., 45,21-30.

    Article  CAS  Google Scholar 

  • Barnett, B.J., Cho, C.Y. & Slinger, S.J. (1979). The essentiality of cholecalciferol in the diets of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol., 63A, 291-297.

    Article  CAS  Google Scholar 

  • Björn, L.O. & Wang, T. (2001). Is provitamin D a UV-B receptor in plants? Plant Ecology, 154, 3-8.

    Google Scholar 

  • Boomsma, F., Jacobs, H.J.C., Havinga, E. & van der Gen, A. (1975). Studies of vitamin D and related compounds, part 24. New irradiation products of pre-vitamin D3. Tetrahedron Lett. 7,427-430.

    Google Scholar 

  • Brown, P.B. & Robinson, E.H. (1992). Vitamin D studies with channel catfish (Ictalurus punctuatus) reared in calcium-free water. Comp. Biochem. Physiol., 103A, 213-219.

    Article  CAS  Google Scholar 

  • Brown, M.M. & Tucker, M.A. (1997). A role for photoproducts of vitamin D in the etiology of cutaneous melanoma. Medical Hypotheses, 48, 351-354.

    Article  Google Scholar 

  • Buchala, A.J. & Pythoud, F. (1988). Vitamin D and related compounds as plant growth substances. Physiol. Plantarum, 74, 391-396.

    Article  CAS  Google Scholar 

  • Buchala, A.J. & Schmid, A. (1979). Vitamin D and its analogues as a new class of plant growth substances affecting rhizogenesis. Nature, 280, 230-231.

    Article  CAS  Google Scholar 

  • Chevalier, G., Baudet, C., AvenelAudran, M., Furman, I. & Wion, D. (1997). Was the formtion of l,25.dihydroxyvitamin D initially a catabolic pathway? Medical Hypotheses, 48, 325-329.

    CAS  Google Scholar 

  • Clemens, T.L., Henderson, S.L., Adams, J.S. & Holick, M.F. (1982). Increased skin pigment reduces the capacity of skin to produce vitamin D in response to ultraviolet irradiation. Lancet, 9,74-76.

    Article  Google Scholar 

  • Curino, A., Skliar, M. & Boland, R. (1998). Identification of 7-dehydrocholesterol, vitamin D3, 25(OH)- vitamin D3 and l,25(OH)2-vitamin D3 in Solanum glaucophyllum cultures grown in absence of light. Biochim. Biophys. Acta, 1425, 485-492.

    Article  PubMed  CAS  Google Scholar 

  • Curino, A., Milanesi, L., Benassati, S., Skliar, M. & Boland, R. (2001). Effect of culture concitions on the synthesis of vitamin D3 metabolites in Solanum glaucophyllum grown in vitro. Phytochemistry, 58, 81-89.

    Article  PubMed  CAS  Google Scholar 

  • DeLuca (1997). Historical overview. In Feldman, D., Glorieux, F.H. & Pike J.W. (eds): Vitamin D, pp. 3- 12. New York: Academic Press. ISBN 0-12-252685-6.

    Google Scholar 

  • Fries, L. (1984). D-vitamins and their precursors as growth regulators in axenically cultivated marine macroalgae. J. Phycol., 20, 62-66.

    Article  CAS  Google Scholar 

  • Feldman, D., Glorieux, F.H. & Pike J.W. (eds) (1997). Vitamin D, pp. ix+450. New York: Academic Press. ISBN 0-12-252685-6.

    Google Scholar 

  • Garland, C.F., Garland, F.C. & Gorham, ED. (1999). Epidemiology of cancer risk and vitamin D. In Holick, M.F. (ed.) Vitamin D: Physiology, molecular biology, and clinical applications, pp. 375-391. Totowa,N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Gershengorn. M.C., Smith, A.R.H., Goulston, G., Goad, L.J., Goodwon, T.W. & Haines, T.H. (1968). The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry, 7, 1698-1706.

    Article  PubMed  CAS  Google Scholar 

  • Glerup, H., Mikkelsen, K., Poulsen, L·, Hass, E., Overbeck, S., Thomsen, J., Charles, P. & Eriksen, E.F. (2000). Commonly recommeded daily intake of vitamin D is not sufficient if sunlight exposure is limited. J. Internal Med.247, 260-268.

    Article  PubMed  CAS  Google Scholar 

  • Glisson, F. (1650). De Rachitide sive morbopuerili, qui vulgo The Rickets diciteur. Pp. 414.

    Google Scholar 

  • Griffin, M.D., Lutz, W., Phan, V.A., BAchman, L.A., McKean, DJ. & Kumar, R. (2001). Dendritic cell modulation by l∝,25 dihydroxyvitamin D3 and its analogs: A vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl. Acad. Sct. USA, 98, 6800-6805.

    Article  CAS  Google Scholar 

  • Guerin, J.P., Kirchner, M. & Cubizolles, F. (2001). Effects of Oxyrrhis marina (Dinoflagellata), bacteria and vitamin D2 on population dynamics of Tisbe holothuris (Copepoda). J. Exp. Marine Biol. Ecol., 261, 1-16.

    Article  CAS  Google Scholar 

  • Havinga, E. (1973). Vitamin D, example and challenge. Experientia, 29, 1181-1193.

    CAS  Google Scholar 

  • Hess, A.F. & Unger, L.G. (1921). Cure of infantile rickets by sunlight. J. Am. Med. Assoc. 77,39.

    Google Scholar 

  • Hess, A.F. & Weinstock, M. (1924). Antirachitic properties imparted to inert fluids and green vegetables by ultraviolet irradiation. J. Biol. Chem. 62, 301-313.

    CAS  Google Scholar 

  • Holick, M.F. (ed.) (1999). Vitamin D: Physiology, molecular biology, and clinical applications, pp. xii+458. Totowa, N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Holick, M.F. (l989).Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans. In Pang, P.K.T. & Schreibman, M.P. Vertebrate endocrinology: Fundamentals and biomedical implications, vol. 3, pp. 7-43. Orlando: Academic Press.

    Google Scholar 

  • Holick, M.F., MacLaughlin, J.A. & Doppelt, S.H. (1981). Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science, 211, 590-592.

    Article  PubMed  CAS  Google Scholar 

  • Holick, M.F., Tian, X.Q. & Allen, M. (1995). Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc. Natl Acad. Sci. USA, 98, 3124-3126.

    Article  Google Scholar 

  • Holick, M.F. (ed.) Vitamin D: Physiology, molecular biology, and clinical applications, pp. xii+458. Totowa, N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Jablonski, N.G. & Chaplin, G. (2000). The evolution of human skin coloration. J. Human Evol., 39, 57-106.

    Article  CAS  Google Scholar 

  • Jarvis, B.C. & Booth, A. (1981). Influence of indole-butyric acid, boron, myo -inositol, vitamin D2and seedling age on adventitious root developmant in cuttings of Phaseolus aureus. Physiol. Plantarum, 53, 213-218.

    Article  CAS  Google Scholar 

  • Jones, G. (1999). Metabolism and catabolism of vitamin D, its metabolites and clinically relevant analogs. In Holick, M.F. (ed.) Vitamin D: Physiology, molecular biology, and clinical applications, pp. 57-84. Totowa, N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Kingsley, R.J., Corcoran, M.L., Krider, K.L. & Kriechbaum, K.L. (2001). Thyroxine and vitamin D in the gorgonian Leptogorgia virgulata. Comp. Biochem. Physiol. A, 129, 897-907.

    Article  CAS  Google Scholar 

  • Kwiecinski, G.G., Lu, Z.R., Chen, T.C. & Holick, M.F. (2001). Observations on serum 25-hydroxyvitamin D and calcium concentrations form wild-caught and captive neotropical bats, Artibeus jamaicensis. Gen. Comp. Endocrinol., 122, 225-231.

    Article  CAS  Google Scholar 

  • Koutkia, P., Chen, T.C. & Holick, M.F. (2001). Vitamin D intoxication associated with an over-the-counter supplement. New England J. Medicine, 345, 66-67.

    Article  CAS  Google Scholar 

  • Kriajev, L. & Edelstein, S. (1994). Vitamin D metabolites and extracellular calcium currents in hemocytes of land snails. Biochem. Biophys. Res. Commun., 204, 1096-1101.

    Article  PubMed  CAS  Google Scholar 

  • Kriajev, L. & Edelstein, S. (1995). Effect of light and nutrient restriction on the metabolism of calcium and vitamin D in land snails. J. Exp. Zool. 272, 153-158.

    Article  CAS  Google Scholar 

  • Kriajev, L., Otremski, I. & Edelstein, S. (1994). Calcium shells from snails: Response to vitamin D metabolites, Calcified Tissue Internal, 55, 204-207.

    Article  CAS  Google Scholar 

  • Larsson, D. (1999). Vitamin D in teleost fish: Non-genomic regulation of intestinal calcium transport. Diss. Göteborg Univ., Dept of Zoophysiology. ISBN 91-628-3681-1.

    Google Scholar 

  • Laudet, V. (1997). Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Molec. Biol., 19, 207-226.

    CAS  Google Scholar 

  • Lehmann, B., Genehr, T., Pietzsch, J. & Meurer, M. (2001). UVB-induced conversion of 7- dehydrocholesterol to 1 a,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J. Investig. Dermatol., 117, 1179-1185.

    Article  PubMed  CAS  Google Scholar 

  • Mathieu, C, Van Etten, E., Gysemans, C, Decallone, B., Kato, S., Laureys, J., Devovere, J., Valcx, D., Verstuyf, A. & Bouillon, R. (2001). In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J. Bone Mineral Res., 16, 2057-2065.

    Article  CAS  Google Scholar 

  • MacLaughlin, J.A., Anderson, R.R. & Holick, M.F. (1982). Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science, 216, 1001-1003.

    Article  PubMed  CAS  Google Scholar 

  • Mellanby, E. (1918). The part played by an “accessory factor” in the production of experimental rickets. J. Physiol. (Lond.), 52, 11-14.

    Google Scholar 

  • Moncousin, C. & Gaspar, T. (1983). Peroxidase as a marker for rooting improvement of Cynara scolymus L. cultured in vitro. Biochem. Physiol. Pflanzen, 178,263-271.

    CAS  Google Scholar 

  • Nemanic, M.K., Whitney, J. & Elias, P.M. (1985). In vitro synthesis of vitamin D-3 by cultured keratinocytes and fíbroblasts: action spectrum and effect of AY-9944. Biochim. Biophys. Acta, 841, 267-277.

    Article  PubMed  CAS  Google Scholar 

  • Nunn, J.D., Katz, D.R., Barker, S., Fraher, L.J., Hewison, M, Hendy, G.N. & O’Riordan, J.L.H. (1986). Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3. Immunology, 59, 479-484.

    CAS  Google Scholar 

  • Okuda, K.-I. & Ohyama, Y. (1999). The enzymes responsible for metabolizing vitamin D. In Holick, M.F. (ed.) Vitamin D: Physiology, molecular biology, and clinical applications, pp. 85-107. Totowa, N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Opperman, L.A. & Ross, F.P. (1990). The adult fruit bat (Rousettus aegypticus) expresses only calbindin- D9K (vitamin D-dependent calcium-binding protein) in its kidney. Comp. Biochem. Physiol. B: Biochem. Molec. Biol, 97, 295-299.

    Google Scholar 

  • Panda, D.K., Miao, D., Tremblay, M.L., Sirois, J., Faroohki, R., Hendy, G.N. 6 Goltzman, D. (2001). Targeted ablation of the 25-hydroxyvitamin D la-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl Acad. Sct. USA, 98, 7498-7503.

    Article  CAS  Google Scholar 

  • Patterson, G.W. (1971). The distribution of sterols in algae. Lipids, 6, 120-127.

    Article  CAS  Google Scholar 

  • Patterson, G.W. (1974). Sterols of some green algae. Comp. Biochem. Physiol. B, 47, 453-457.

    Article  CAS  Google Scholar 

  • Rambeck, W.A., Kreutzberg, O., Bruns-Droste, C. & Zucker, H. (1981). Vitamin D-like activity of Trisetum flavescens. Zschr. Pflanzenphysiol., 104, 9-16.

    CAS  Google Scholar 

  • Shewakramani, S., Rakita, D., Tangpricha, V. & Holick, M.F. (2001). Vitamin D insufficiency is common and under-diagnosed among African American patients. J. Bone Mineral Res., 16, S512.

    Google Scholar 

  • Steenbock, H. & Black, A. (1924). The induction of growth-promoting and calcifying properties in a ration by exposure to ultra-violet light. J. Biol.Chem., 64,263-298.

    Google Scholar 

  • Takada, K. (1983). Formation of fatty acid esterified vitamin D3 in rat skin by exposure to ultraviolet radiation. J. Lipid Res., 24,441-448.

    CAS  Google Scholar 

  • Takeuchi, A., Okano, T., Tanda, M. & Kobayashi, T. (1991). Possible origin of extremely high contents of vitamin D3 in some kinds of fish liver. Comp. Biochem. Physiol. 100A, 483-487.

    CAS  Google Scholar 

  • Tasende, M.G. (2000). Fatty acid and sterol composition of gametophytes and sporophytes of Chondrus crispus (Gigartinaceae, Rhodophyta). Scientia Marina, 64,421-426.

    Article  CAS  Google Scholar 

  • Tian, W.Q. & Holick, M.F. (1995). Catalyzed thermal isomerization between previtamin D3 and vitamin D3 via ß-cyclodextrin complexation. J. Biol. Chem., 270, 8706-8711.

    Article  PubMed  CAS  Google Scholar 

  • Tian, W.Q. & Holick, M.F. (1999). A liposomal model that mimics the cutaneous production of vitamin D3. J. Biol. Chem., 274, 4174-4179.

    Article  PubMed  CAS  Google Scholar 

  • Tian, X.Q., Chen, T.C., Matsuoka, L.Y., Wortsman, J. & Holick, M.F. (1993). Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin. J. Biol. Chem., 268, 14888- 14892.

    PubMed  CAS  Google Scholar 

  • Uskovic’, M.R., Johnson, C.S., Trump, D.L. & Getzenberg, R.H. (1999). Anticancer activity of vitamin D analogs. In Holick, M.F. (ed.) Vitamin D: Physiology, molecular biology, and clinical applications, pp. 431-445. Totowa, N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Uva, B.M., Ghiani, P., Deplano, S., Madich, A., Vaccari, M. & Vallarino, M. (1978). Occurrence of 7- dehydrocholesterol in the uropygial gland of domestic fowls. Acta Histochem. 62, 237-243.

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen, P.T.M., Vink-van Wijngaarden, T. & Pols, H.A. (1999). Vitamin D and breast cancer. In Holick, M.F. (ed.) Vitamin D: Physiology, molecular biology, and clinical applications, pp. 411-429. Totowa, N.J.: Humana Press. ISBN 0-89603-467-4.

    Google Scholar 

  • Vega, M.A. & Boland, R.L. (1986).Vitamin D-3 induces the novo synthesis of calmodulin in Phaseolus vulgaris root segments in vitro. Biochim. Biophys. Acta, 881, 364-374.

    Article  CAS  Google Scholar 

  • Vega, M.A. & Boland, R.L. (1988). Presence of sterol-binding sites in the cytosol of French-bean (Phaseolus vulgaris) roots. Biochem. J., 250, 565-569.

    PubMed  CAS  Google Scholar 

  • Vega, M.A. & Boland, R.L. (1989). Partial characterization of the sterol binding macromolecule of Phaseolus vulgaris roots. Biochim. Biophys. Acta, 1012, 10-15.

    Article  CAS  Google Scholar 

  • Wang, T., Bengtsson, G., Kämefelt, I. & Björn, L.O. (2001). Provitamins and vitamins D2 and D3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. J. Photochem. Photobiol B: Biology, 62, 118-122.

    Article  PubMed  CAS  Google Scholar 

  • Washburn, E.W. et al. (eds) International critical tables of numerical data, physics chemistry and technology, vol. V, p. 270. New York:McGraw-Hill.

    Google Scholar 

  • Webb, A.R., de Costa, B. & Holick, M.F. (1989). Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J. Clin. Endocrin. Metab., 68, 882-887.

    Article  CAS  Google Scholar 

  • Whistler, D. Morbo puerili Anglorum, quern patrio idiomate indigenae vocant The Rickets. Lugduni Batavorum 1-13.

    Google Scholar 

  • Zelinski, J.M., Sykes, D.E. & Weiser, M.M. (1991). The effect of vitamin D on rat intestinal plasma membrane Ca-pump mRNA. Biochem. Biophys. Res. Commun., 179, 749-755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björn, L.O. (2002). Vitamin D. In: Björn, L.O. (eds) Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0581-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0581-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3936-9

  • Online ISBN: 978-94-010-0581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics