Skip to main content

Computer Simulations of Charged Systems

  • Conference paper
Electrostatic Effects in Soft Matter and Biophysics

Part of the book series: NATO Science Series ((NAII,volume 46))

Abstract

Polyelectrolytes represent a broad and interesting class of materials [1] that enjoy an increasing attention in the scientific community. For example, in technical applications polyelectrolytes are widely used as viscosity modifiers, precipitation agents, superabsorbers, or leak protectors. In biochemistry and molecular biology they are of interest because virtually all proteins, as well as DNA, are polyelectrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hara, Polyelectrolytes: Science and Technology (Marcel Dekker, New York, 1993)

    Google Scholar 

  2. K. S. Schmitz, Macroions in solution and colloidal suspension (VCH Publishers, New York, 1 edition, 1993)

    Google Scholar 

  3. H. Dautzenberg, W. Jaeger, J. Kötz, B. Philipp, Ch. Seidel, D. Stscherbina, Polyelectrolytes, (Hanser Publishers, Munich, 1994)

    Google Scholar 

  4. S. Förster, M. Schmidt, Adv. Poly. Sci. 120, Springer Verlag Berlin, Heidelberg (1995)

    Google Scholar 

  5. J.-L. Barrat, J.-F. Joanny, Adv. Chem. Phys. 94, 1 (1995)

    Google Scholar 

  6. J.-F. Joanny, Chapter in this volume.

    Google Scholar 

  7. K. Binder, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, Como Conference Proceeding, edited by K. Binder and G. Ciccotti (Società Italiana di Fisica, Bologna, 1996); Baumgärtner and K. Binder, Applications of the Monte Carlo Method in Statistical Physics (Springer, Berlin, 1984); S. G. Whittington, Numerical Methods for Polymeric Systems, The IMA Volumes in Mathematics and its Applications (Springer, New York, 1998); L. Monnerie and U. W. Suter, Atomistic Modelling of Physical Properties, Vol. 116 of Advances in Polymer Science(Springer, Heidelberg, 1994); K. Binder, in Computational Modeling of Polymers, edited by J. Bicerano (Springer, Berlin, Heidelberg, New York, 1992); Computer Simulation of Polymers, edited by R. J. Roe (Prentice Hall, Englewood Cliffs, NJ, 1991); Elastomeric Polymer Networks, edited by H. E. Mark and B. Erman (Prentice Hall, Englewood Cliffs, 1992).

    Google Scholar 

  8. K. Kremer and K. Binder, Comp. Phys. Reports 7, 259 (1988); K. Kremer, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, Como Conf. Proceedings 1995, edited by K. Binder and G. Ciccotti (Societa Italiana di Fisica, Bologna, 1996), p. 671.

    Article  ADS  Google Scholar 

  9. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, 2nd ed. (Oxford Univ. Press, London, 1989); D. Frenkel and B. Smit, Understanding Molecular Simulation: From Basic Algorithms to Applications (Academic Press, San Diego, CA, 1996).

    Google Scholar 

  10. J. Baschnagel et al., in Bridging the Gap Between Atomistic and Coarse Grained Model of Polymers: Status and Perspectives, Advances in Polymer Science (Springer, Berlin, 1998).

    Google Scholar 

  11. G. S. Grest and K. Kremer, Phys. Rev. A, 33, 3628 (1986).

    Article  ADS  Google Scholar 

  12. H. Risken, The Fokker-Planck Equation (Springer, Berlin, second edition, 1989); B. Dünweg, J. Chem. Phys., 99, 6977 (1993).

    Book  MATH  Google Scholar 

  13. B. Dünweg and W. Paul, Int. J. Mod. Phys. C, 2, 817 (1991).

    Article  ADS  Google Scholar 

  14. E. Fermi, J.R. Pasta, and S. Ulam, in Collected Works of Enrico Fermi 2, 978 (University of Chicago Press, Chicago, 1965).

    Google Scholar 

  15. Monte Carlo Methods in Statistical Physics edited by K. Binder (Springer Verlag, Berlin, Heidelberg, New York, 1979); Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer Verlag, Heidelberg, New York, 1984); Monte Carlo Methods in Condensed Matter Physics, edited by K. Binder (Springer Verlag, Berlin, Heidelberg, New York, 1992).

    Google Scholar 

  16. P. Español, P. Warren, Europhys. Lett. 30, 191 (1995); A. J. C. Ladd, J. Fluid Mech. 271, 285 (1994); J. Fluid Mech. 271, 311 (1994); Phys. Rev. Lett. 76, 1392 (1996); P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 8225 (1999); P. J. Hoogerbrugge and J. M. V. A. Kroelman, Europhys. Lett. 19, 155 (1992); S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998).

    Article  ADS  Google Scholar 

  17. P. Ewald, Ann. Phys. 64, 253 (1921).

    Article  MATH  Google Scholar 

  18. D. M. Heyes, J. Chem. Phys. 74, 1924 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  19. H. J. C. Berendsen, in Computer Simulation of Biomolecular Systems, edited by W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson (ESCOM, The Netherlands, 1993), Vol. 2, pp. 161–81.

    Google Scholar 

  20. P. H. Hünenberger, J. Chem. Phys. 113, 10464 (2000).

    Article  Google Scholar 

  21. J. Kolafa and J. W. Perram, Molecular Simulation 9, 351 (1992).

    Article  Google Scholar 

  22. S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. Lond. A 373, 27 (1980).

    Article  ADS  Google Scholar 

  23. S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. Lond. A 373, 57 (1980).

    Article  ADS  Google Scholar 

  24. J. Perram, H. G. Petersen, and S. de Leeuw, Mol. Phys. 65, 875 (1988).

    Article  ADS  Google Scholar 

  25. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (IOP, London, 1988).

    Book  MATH  Google Scholar 

  26. D. Y. T. Darden and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  ADS  Google Scholar 

  27. U. Essmann et al, J. Chem. Phys. 103, 8577 (1995).

    Article  ADS  Google Scholar 

  28. H. G. Petersen, J. Chem. Phys. 103, 3668 (1995).

    Article  ADS  Google Scholar 

  29. E. L. Pollock and J. Glosli, Comp. Phys. Comm. 95, 93 (1996).

    Article  ADS  MATH  Google Scholar 

  30. H. J. Limbach, Ph.D. thesis, Universität, Mainz, Germany, 2001.

    Google Scholar 

  31. M. Deserno and C. Holm, J. Chem. Phys. 109, 7678 (1998).

    Article  ADS  Google Scholar 

  32. M. Deserno and C. Holm, J. Chem. Phys. 109, 7694 (1998).

    Article  ADS  Google Scholar 

  33. J. Lekner, Physica A 176, 485 (1991).

    Article  ADS  Google Scholar 

  34. R. Sperb, Molecular Simulation 20, 179 (1998); ibid. 22, 199 (1999).

    Article  MATH  Google Scholar 

  35. R. Sperb and R. Strebel, ETH Research Report No 2000-02.

    Google Scholar 

  36. J. Barnes and P. Hut, Nature 324, 446 (1986).

    Article  ADS  Google Scholar 

  37. L.Greengard and V. Rhoklin, J. Comp. Phys. 73, 325 (1987).

    Article  ADS  MATH  Google Scholar 

  38. K. Esselink, Comp. Phys. Comm. 87, 375 (1995).

    Article  ADS  Google Scholar 

  39. A. H. Widmann and D. B. Adolf, Comp. Phys. Comm. 107, 167 (1997).

    Article  ADS  MATH  Google Scholar 

  40. A. Arnold, Diploma thesis, Johannes Gutenberg-Universität, 2001.

    Google Scholar 

  41. A. Arnold and C. Holm, to be published (2001).

    Google Scholar 

  42. I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).

    Article  ADS  Google Scholar 

  43. A. Arnold, J. Dejoannis, and C. Holm, to be published (2001).

    Google Scholar 

  44. Z. W. Wang and C. Holm, J. Chem. Phys., in press (2001).

    Google Scholar 

  45. M. Deserno and C. Holm, Chapter in this volume.

    Google Scholar 

  46. R. Kjellander, Chapter in this volume.

    Google Scholar 

  47. A. G. Moreira and R. R. Netz, Chapter in this volume.

    Google Scholar 

  48. R. Podgornik, Chapter in this volume.

    Google Scholar 

  49. U. Micka, K. Kremer, Europhys. Lett. 38, 279 (1997).

    Article  ADS  Google Scholar 

  50. M. J. Stevens and K. Kremer, J. Chem. Phys. 103, 1669 (1995); M. Stevens, K. Kremer, Phys. Rev. Lett. 71, 2228 (1993); M. Stevens, K. Kremer, Macromolecules 26, 4717 (1993)).

    Article  ADS  Google Scholar 

  51. A. V. Dobrynin, M. Rubinstein, and S. P. Obukhov, Macromolecules 29, 2974 (1996).

    Article  ADS  Google Scholar 

  52. A. V. Lyulin and B. Dünweg and O. V. Borisov and A. A. Darinskii, Macromolecules 32, 3264 (1999); P. Chodanowski, and S. Stoll, J. Chem. Phys 111, 6069 (1999).

    Article  ADS  Google Scholar 

  53. U. Micka, C. Holm, and K. Kremer, Langmuir 15, 4033 (1999); U. Micka and K. Kremer, Europhys. Lett., 49, 189 (2000).

    Article  Google Scholar 

  54. H. Schiessel and P. Pincus, Macromolecules 31, 7953 (1998); H. Schiessel, Macromolecules 32, 5673 (1999).

    Article  ADS  Google Scholar 

  55. A. V. Dobrynin, and M. Rubinstein, Macromolecules 32, 915 (1999).

    Article  ADS  Google Scholar 

  56. M. Rawiso, Chapter in this volume.

    Google Scholar 

  57. C. E. Williams, Chapter in this volume.

    Google Scholar 

  58. H. J. Limbach and C. Holm, J. Chem. Phys. 114, 9674 (2001).

    Article  ADS  Google Scholar 

  59. M. Castelnovo, P. Sens, and J.-F. Joanny, Eur. Phys. J. E 1, 115 (2000).

    Article  Google Scholar 

  60. A. Deshkovski, S. Obukhov, and M. Rubinstein, Phys. Rev. Lett. 86, 2341 (2001).

    Article  ADS  Google Scholar 

  61. G. L. Gouy, J. de Phys. 9, 457 (1910).

    MATH  Google Scholar 

  62. T. Alfrey, P. W. Berg, and H. J. Morawetz, J. Polym. Sci. 7, 543 (1951).

    Article  ADS  Google Scholar 

  63. A. Katchalsky, Pure Appl. Chem. 26, 327 (1971).

    Article  Google Scholar 

  64. B. Jönsson and H. Wennerström, Chapter in this volume.

    Google Scholar 

  65. M. L. Bret and B. Zimm, Biopolymers 23, 271 (1984).

    Article  Google Scholar 

  66. M. L. Bret and B. Zimm, Biopolymers 23, 287 (1984).

    Article  Google Scholar 

  67. M. Deserno, C. Holm, and S. May, Macromolecules 33, 199 (2000).

    Article  ADS  Google Scholar 

  68. G. Manning, J. Chem. Phys. 51, 924 (1969).

    Article  ADS  Google Scholar 

  69. F. Oosawa, Poly electrolytes (Marcel Dekker, New York, 1971).

    Google Scholar 

  70. M. Deserno, Ph.D. thesis, Universität Mainz, 2000.

    Google Scholar 

  71. M. Deserno, C. Holm, and K. Kremer, in Physical Chemistry of Polyelectrolytes, Vol. 99 of Surfactant science series, edited by T. Radeva (Marcel Decker, New York, 2001), Chap. 2, pp. 59–110.

    Google Scholar 

  72. B. Guilleaume et al., J. Phys. Cond. Mat. 12, A245 (2000).

    Article  ADS  Google Scholar 

  73. J. Blaul, M. Wittemann, M. Ballauff, and M. Rehahn, J. Phys. Chem. B 104, 7077 (2000).

    Article  Google Scholar 

  74. M. C. Barbosa, M. Deserno, and C. Holm, Europhys. Lett. 52, 80 (2000).

    Article  ADS  Google Scholar 

  75. M. Deserno et al., Eur. Phys. J. E 5, 97 (2001).

    Article  Google Scholar 

  76. R. Podgornik, D. Rau, and A. Parsegian, Biophys. J. 66, 962 (1994).

    Article  Google Scholar 

  77. J. X. Tang, S. Wong, P. T. Tran, and P. Janmey, Ber. Bunsenges. Phys. Chem. 100, 796 (1996).

    Article  Google Scholar 

  78. V. A. Bloomfield, Current Opin. Struct. Biol. 6, 334 (1996).

    Article  Google Scholar 

  79. A. P. Lyubartsev, J. X. Tang, P. A. Janmey, and L. Nordenskiöld, Phys. Rev. Lett. 81, 5465 (1998).

    Article  ADS  Google Scholar 

  80. J. Neu, Phys. Rev. Lett. 82, 1072 (1999).

    Article  ADS  Google Scholar 

  81. J. Sader and D. Y. Chan, J. Colloid Interface Sci. 213, 268 (1999).

    Article  Google Scholar 

  82. E. Trizac and J.-L. Raimbault, Phys. Rev. E (2000).

    Google Scholar 

  83. W. M. Gelbart, Chapter in this volume.

    Google Scholar 

  84. A. R. Khokhlov, K. Zeldovich, and E. Y. Kramarenko, Chapter in this volume.

    Google Scholar 

  85. T. T. Nguyen, A. Y. Grosberg, and B. I. Shklovskii, see Chapter in this volume.

    Google Scholar 

  86. O. Lambert, L. Letellier, W. Gelbart, and J. Rigaud, Proceedings of the National Academy of Sciences (USA) 97, 7248 (2000).

    Article  ADS  Google Scholar 

  87. K. E. van Holde, Chromatin (Springer, New York, 1989).

    Book  Google Scholar 

  88. A. V. Kabanov and V. A. Kabanov, Bioconjugate Chem. 6, 7 (1995).

    Article  Google Scholar 

  89. L. Guldbrand, B. Jönsson, H. Wennerström, and P. Linse, J. Chem. Phys. 80, 2221 (1984).

    Article  ADS  Google Scholar 

  90. L. G. Nilsson, L. Guldbrand, and Nordenskiöld, Mol. Phys. 72, 177 (1991).

    Article  ADS  Google Scholar 

  91. A. P. Lyubartsev and L. Nordenskiöld, J. Phys. Chem. 101, 4335 (1997).

    Article  Google Scholar 

  92. N. Gr0nbech-Jensen, R. J. Mashl, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).

    Article  ADS  Google Scholar 

  93. M. J. Stevens, Phys. Rev. Lett. 82, 101 (1999).

    Article  ADS  Google Scholar 

  94. E. Allahyarov and H. Löwen, Phys. Rev. E 62, 5542 (2000).

    Article  ADS  Google Scholar 

  95. I. Rouzina and V. Bloomfield, Journal of Phys. Chem. 100, 9977 (1996).

    Article  Google Scholar 

  96. B. I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999).

    Article  ADS  Google Scholar 

  97. F. Oosawa, Biopolymers 6, 1633 (1968).

    Article  Google Scholar 

  98. O. Spalla and L. Belloni, Phys. Rev. Lett. 74, 2515 (1995).

    Article  ADS  Google Scholar 

  99. B.-Y. Ha and A. J. Liu, Phys. Rev. Lett. 79, 1289 (1997).

    Article  ADS  Google Scholar 

  100. A. W. C. Lau, D. Levine, and P. Pincus, Phys. Rev. Lett. 84, 4116 (2000).

    Article  ADS  Google Scholar 

  101. A. W. C. Lau, P. Pincus, D. Levine, and H. A. Fertig, cond-mat/0006264.

    Google Scholar 

  102. E. Gonzales-Tovar, M. Lozada-Cassou, and D. Henderson, J. Chem. Phys. 83, 361 (1985).

    Article  ADS  Google Scholar 

  103. R. Kjellander and S. Marcelja, Chem. Phys. Lett. 112, 49 (1984).

    Article  ADS  Google Scholar 

  104. M. Deserno and C. Holm, to be published.

    Google Scholar 

  105. M. Deserno and C. Holm, submitted (2001).

    Google Scholar 

  106. M. Deserno, F. Jiménez-Ángeles, C. Holm, and M. Lozada-Cassou, cond-mat/0104002, and Journal Phys. Chem. B, in press.

    Google Scholar 

  107. J. J. Thomson, Philos. Mag. 7, 237 (1904); A. Perz-Garrido and M. Moore, Phys. Rev. B 60, 15628 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  108. D. W. Oxtoby, H. P. Gillis, and N. H. Nachtrieb, in Principles of Modern Chemistry(Saunders College Publishing, Philadelphia, 1999), Chap. 3, p. 80.

    Google Scholar 

  109. B. I. Shklovskii, Phys. Rev. E 60, 5802 (1999).

    Article  ADS  Google Scholar 

  110. R. Messina, C. Holm, and K. Kremer, Phys. Rev. Lett. 85, 872 (2000).

    Article  ADS  Google Scholar 

  111. R. Messina, C. Holm, and K. Kremer, Europhys. Lett. 51, 461 (2000).

    Article  ADS  Google Scholar 

  112. R. Messina, C. Holm, and K. Kremer, Euro. Phys. J. E. 4, 363 (2001).

    Article  Google Scholar 

  113. L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).

    Article  ADS  Google Scholar 

  114. R. Messina, C. Holm, and K. Kremer, Phys. Rev. E 64, 021405 (2001).

    Article  ADS  Google Scholar 

  115. R. Messina, cond-mat/0104076, submitted.

    Google Scholar 

  116. B. D’Aguanno and R. Klein, Phys. Rev. A 46, 7652 (1992).

    Article  ADS  Google Scholar 

  117. E. Allahyarov, H. Löwen, and S. Trigger, Phys. Rev. E 57, 5818 (1998).

    Article  ADS  Google Scholar 

  118. H. Schiessel, private communication.

    Google Scholar 

  119. H. Greberg and R. Kjellander, J. Chem. Phys 108, 2940 (1998).

    Article  ADS  Google Scholar 

  120. M. Lozada-Cassou and F. Jiménez-Ángeles, eprint physics/0105043.

    Google Scholar 

  121. R. Messina, E. González-Tovar, M. Lozada-Cassou, and C. Holm, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Holm, C., Kremer, K. (2001). Computer Simulations of Charged Systems. In: Holm, C., Kékicheff, P., Podgornik, R. (eds) Electrostatic Effects in Soft Matter and Biophysics. NATO Science Series, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0577-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0577-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0197-0

  • Online ISBN: 978-94-010-0577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics