Highly Charged Polyelectrolytes: Experimental Aspects

  • Claudine E. Williams
Part of the NATO Science Series book series (NAII, volume 46)


This chapter is an overview of the properties of linear, flexible and highly charged synthetic polyelectrolytes as seen by an experimentalist. Firstly, two characteristic properties of the single chain, i.e. extended conformation and charge renormalisation by counterion condensation, are examined; their implications to the behaviour of dilute solutions is considered. Then the structural properties of semi-dilute solutions of hydrophilic polyelectrolytes are introduced and the results of selected x-ray and neutron scattering experiments are compared to the predictions of the isotropic model of de Gennes et al. Most of these data corroborate the current models but some raise puzzling questions. Finally, the effects of the interplay between electrostatic interactions and hydrophobic ones (bad solvent conditions) on chain conformation are described.


Small Angle Neutron Scattering Chain Conformation Charge Fraction Polyelectrolyte Solution Polyelectrolyte Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raphael E., Joanny J.-F., Europhys. Lett. 13, 623, (1990).ADSGoogle Scholar
  2. 2.
    Borukhov I., Andelman D., Borrega R., Cloitre M., Leibler L., Orland H., J. Phys. Chem. B 104, 11027, (2000).Google Scholar
  3. 3.
    Flory P. J., Principles of Polymer Chemistry, Cornell University Press (Ithaca) 1953.Google Scholar
  4. 4.
    Staudinger H., Die hochmolekularen organischen Verbindungen Kautschuk und Cellulose, Springer Verlag (Berlin) 1932; Kern W. Z., Physic Chem A 181, 283, (1938).Google Scholar
  5. 5.
    Fuoss R.M., Strauss U.P., J. Polym. Sci. 3, 246, (1948); Fuoss R.M., J. Polym. Sci. 3, 603, (1948); correction ibid. 3, 246, (1949); Katchalsky A., Eisenberg H., J. Polym. Sci. 6, 145, (1951); Oth A., Doty P., J. Phys. Chem. 56, 43, (1952).ADSGoogle Scholar
  6. 6.
    R. M. Fuoss, Disc. Faraday Soc. 11, 125, (1952).Google Scholar
  7. 7.
    The existence of a maximum has been reported in many experiments but was not easily accepted because it was thought to be due to artefacts due to uncontrolled remaining impurities in the solution, interaction with the wall of the viscosimeter, etc; for definite experiments see Cohen J., Priel Z., Rabin Y., J. Chem. Phys. 88, 7111, (1988) orADSGoogle Scholar
  8. 7a.
    Yamanaka J., Matsuoka H., Kitano H. Hasegawa M., Ise N., J. Am. Chem. Soc. 112, 587–592, (1990); a critical discussion on the complex rheology of polyelectrolytes can be found in Boris C.B., Colby R.H., Macromolecules 31, 5746-5755, (1998).Google Scholar
  9. 8.
    Kuhn W., Kunzle O., Katchalsky A., Helv. Chem. Acta 31, 1994, (1948).Google Scholar
  10. 9.
    Stevens M.J., Kremer K., J. Chem. Phys. 103, 1669, (1995).ADSGoogle Scholar
  11. 10.
    de Gennes P.G., Pincus P., Velasco R.M., Brochard F., J. Phys. (Paris) 37, 1461, (1976).Google Scholar
  12. 11.
    de Gennes P.G., Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, NY 1979.Google Scholar
  13. 12.
    The same reasoning can be applied to a chain in good solvent. The case of a bad solvent is more subtle and a globule/solvent surface tension contribution has to be included in the energy; this will be briefly treated in the section dealing with hydrophobic PE.Google Scholar
  14. 13.
    Fuoss R.M., Katchalsky A., Lifson S., Proc. Natl. Acad. Sa. USA 37, 579 (1951); Alfrey T., Berg P., Morawetz H., J. Polym. Sci 7, 543, (1951); Fixman M. J., J. Chem. Phys. 70, 4995, (1979).ADSMATHGoogle Scholar
  15. 14.
    Manning G.S., J. Chem. Phys. 51, 924 and 934, (1969).Google Scholar
  16. 15.
    Osawa F., J. Polym. Sa 13, 93, (1954).ADSGoogle Scholar
  17. 16.
    Oosawa F., Polyelectrolytes 1971 M.Dekker, New York.Google Scholar
  18. 17.
    It is important to stress that, unless specifically stated, we are not discussing here the case of polyelectrolytes with a long persistence length such as DNA, where the chain configuration is closer to that of a rod and where Manning condensation is also presentGoogle Scholar
  19. 18.
    Manning G.S., Ber. Bunsenges. Phys. Chem. 100, 909–922, (1966).Google Scholar
  20. 19.
    Essafi W., Lafuma F., Williams C.E., Eur. Phys. J. B 9, 261–66, (1999).ADSGoogle Scholar
  21. 20.
    Most quantitative determinations of the distribution of counterions by contrast matching SANS and their fit with Poisson-Boltzmann equation have dealt with rod-like polyelectrolytes (DNA and synthetic polymers). For an attempt with poly(styrenesulfonate), see Kassapidou K., Jesse W., Kuil M.E., Lapp A., Egelhaaf S., van der Maarel J.R.C., Macromolecules 30, 2671–2684, (1997).ADSGoogle Scholar
  22. 21.
    Ramanathan G.V., Woodbury C.P., J. Chem. Phys. 77, 4133, (1982).ADSGoogle Scholar
  23. 22.
    Gonzales-Mozuelos P., Olvera de la Cruz M., J. Chem. Phys. 103, 3145, (1995).ADSGoogle Scholar
  24. 23.
    Nyquist R.M., Ha B.Y., Liu A., Macromolecules 32, 3481, (1999).ADSGoogle Scholar
  25. 24.
    Stevens M. J., Kremer K., J. Chem. Phys. 103, 1669, (1995).ADSGoogle Scholar
  26. 25.
    Micka U., Holm C, Kremer K., Langmuir 15, 4033, (1999).Google Scholar
  27. 26.
    Brilliantov N.V., Kuznetsov D.V., Klein R., Phys. Rev. Lett. 81, 1433–1436, (1998).ADSGoogle Scholar
  28. 27.
    Schiessel H., Pincus P., Macromolecules 31, 7953–7959, (1998).ADSGoogle Scholar
  29. 28.
    The longitudinal movement and the subsequent escape of a counterion is clearly seen in the simulations of M. Stevens (unpublished results).Google Scholar
  30. 29.
    Bleam M.L., Anderson CF., Record Jr M.T., Proc. Natl. Acad. Sci. USA 77, 3085, (1980).ADSGoogle Scholar
  31. 30.
    Schmitz K.S. in Macro-ion Characterization, chapter 1, ACS, Washington 1994.Google Scholar
  32. 31.
    Schmitz K. S., Langmuir 13, 5849, (1997).Google Scholar
  33. 32.
    Katchalsky A., Alexandrowicz Z., Kedem O. in Chemical Physics of Ionic Solutions, Wiley, New York 1966.Google Scholar
  34. 33.
    Barrat J.L., Joanny J.-F., Adv. Chem. Phys. 100, 909–922, (1996).Google Scholar
  35. 34.
    Kaji K., Urakawa H., Kanaya T. and Kitamaru R., J. Phys. France 49, 993–1000, (1988).Google Scholar
  36. 35.
    M.J. Stevens, K. Kremer, in Macro-ion Characterization, K.S. Schmitz, ed., ACS, Washington 1994.Google Scholar
  37. 36.
    Boris D.C., PhD thesis, Univ. of Rochester, New York 1996.Google Scholar
  38. 37.
    Boris D.C., Colby R.H., Macromolecules 31, 5746–5755, (1998).ADSGoogle Scholar
  39. 38.
    Dobrynin A., Colby R. H., Rubinstein M., Macromolecules 28, 1859, (1995).ADSGoogle Scholar
  40. 39.
    Rubinstein M, Colby R. H., Dobrynin A., Phys. Rev. Lett. 73, 2776, (1994).ADSGoogle Scholar
  41. 40.
    We have assumed here that there is only one characteristic length in the problem, i.e. that the electrostatic persistence length of an intrinsically flexible polyelectrolyte is proportional to the Debye screening length. This is still a disputed fact. See section 4.3 and, for instance, ref. 11.Google Scholar
  42. 41.
    Pfeuty P.J., J. Phys. France Coll C2 39, 149, (1978).Google Scholar
  43. 42.
    Higgins J.S., Benoit H.C., Polymers and Neutron Scattering, Oxford University Press 1996.Google Scholar
  44. 43.
    f is actually an effective f which takes into account only those counterions which are free (osmotically active) in the solution.Google Scholar
  45. 44.
    Förster S., Schmidt M., Adv. Polym. Sci. 120, 51, (1995).Google Scholar
  46. 45.
    Cotton J.P., Moan M., J. Phys. Lettres (Paris) 37, 75–77, (1976).Google Scholar
  47. 46.
    Nierlich M., et al, J. Phys. (France) 40, 701, (1979); Williams C.E., et al, J. Polym. Sci. Polym. Lett. 17, 379-384, (1979).Google Scholar
  48. 47.
    Kaji K., Urakawa H., Kanaya T. and Kitamaru R., Macromolecules 49, 1835–1839, (1984).ADSGoogle Scholar
  49. 48.
    Ise N., Okubo T., Kunugi S., Matsuoka H., Yamamoto K., Ishii Y., J. Chem. Phys. 81, 3294, (1984).ADSGoogle Scholar
  50. 49.
    Nishida K., Kaji K., Kanaya T., Macromolecules 31, 7378–7384, (1998).Google Scholar
  51. 50.
    Netz R., Eur. Phys. J. E, to be published.Google Scholar
  52. 51.
    Boué F., Cotton J.P., Lapp A., Jannink G., J. Chem. Phys. 101, 2562–2568, (1994).ADSGoogle Scholar
  53. 52.
    Spiteri M.N., PhD thesis, Paris XI 1997.Google Scholar
  54. 53.
    Hayter J., Jannink G., Brochard F., de Gennes P.G., J. Phys. Lett. 41, L-451, (1980).Google Scholar
  55. 54.
    The term “ aggregate” is misleading as it gives an image of a static cluster of chains and their counterions. However one plausible interpretation is the presence of large concentration fluctuations which are sometimes referred to as “temporal aggregates” or “random inhomogeneities”.Google Scholar
  56. 55.
    Brett D.E., Amis E. J., Macromolecules 31, 7378–7384, (1998).ADSGoogle Scholar
  57. 56.
    Sedlak M., Macromolecules 26, 1158–1162, (1993).ADSGoogle Scholar
  58. 57.
    Schmitz K.S. 1994 in Macro-ion Characterization, Chapter 1, ACS Symposium Series.Google Scholar
  59. 58.
    Odijk T., J. Polym. Sci. Polym. Phys. Ed. 15, 477–483, (1977).ADSGoogle Scholar
  60. 59.
    Odijk T., Houwaart A.C., J. Polym. Sci. Polym. Phys. Ed. 16, 627–639, (1978).ADSGoogle Scholar
  61. 60.
    Skolnick J., Fixman M., Macromolecules 10, 944–948, (1977).ADSGoogle Scholar
  62. 61.
    Barrat J.L., Joanny J.-F., Europhys. Lett. 24, 333, (1993); Ha B.Y., Thirumalai D., Macromolecules 28, 577, (1995); Witten T., Pincus P., Europhys. Lett. 3, 315, (1993).ADSGoogle Scholar
  63. 62.
    Witten T., Li H., Macromolecules 28, 5921, (1995).ADSGoogle Scholar
  64. 63.
    Micka U., Kremer K., J. Phys. Condens. Matter (UK) 8, 9463, (1995).ADSGoogle Scholar
  65. 64.
    Spiteri M.N., Boué F., Cotton J.P., Lapp A., Phys. Rev. Lett. 77, 5418, (1996).Google Scholar
  66. 65.
    Essafi W. PhD thesis, Paris VI 1996.Google Scholar
  67. 66.
    Essafi W., Lafuma F., Williams C.E. 1994 in Macro-ion Characterization. From Dilute Solutions to Complex Fluids, K.S. Schmitz, ed., ACS, Washington, 548, 278.Google Scholar
  68. 67.
    Essafi W., Lafuma F., Williams CE., J. de Phys. II 5, 1269–1275, (1995).ADSGoogle Scholar
  69. 68.
    Carbajal-Tinoco M.D., Williams C.E., Europhysics Lett. 52, 284–290, (2000).ADSGoogle Scholar
  70. 69.
    Carbajal-Tinoco M.D., Ober R., Dolbnya I., Bras W., Williams C.E. 2001, preprint.Google Scholar
  71. 70.
    Khokhlov A.R, J. Phys. A 13, 979, (1980).ADSGoogle Scholar
  72. 71.
    Dobrynin A.V., Rubinstein M., Obukhov S.P., Macromolecules 29, 2974, (1996).ADSGoogle Scholar
  73. 72.
    Dobrynin A.V., Rubinstein M., Macromolecules 32, 915–922, (1999).ADSGoogle Scholar
  74. 73.
    Chatellier X. PhD thesis, Strasbourg 1998.Google Scholar
  75. 74.
    Waigh T.A., Ober R., Williams C.E., Galin J.C., Macromolecules 34, 1973–1980, (2001).ADSGoogle Scholar
  76. 75.
    Micka U., Holm C, Kremer K., Langmuir 15, 4033–4044, (1999).Google Scholar
  77. 76.
    Batzill St., Luxemburger R., Deike R., Weber R., Eur. Phys. J. B 1, 491–501, (1998).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Claudine E. Williams
    • 1
  1. 1.Laboratoire des Fluides Organisés (CNRS URA 792)Physique de la Matière Condensée Collège de FranceParisFrance

Personalised recommendations