Advertisement

An integrated approach for the evaluation of biological control of the complex Polymyxa betae/Beet Necrotic Yellow Vein Virus, by means of seed inoculants

  • R. Resca
  • M. Basaglia
  • S. Poggiolini
  • P. Vian
  • S. Bardin
  • U. F. Walsh
  • C. M. Enriquez Barreiros
  • F. O’Gara
  • M. P. Nuti
  • S. Casella
  • U. Peruch
Chapter
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 96)

Abstract

Rhizomania is an extremely severe sugarbeet disease caused by the complex Polymyxa betae/Beet Necrotic Yellow Vein Virus (BNYVV). A relatively small number of recently introduced sugarbeet cultivars characterized by a high tolerance to rhizomania are available on the market. An integrated approach was therefore developed using Pseudomonas fluorescens biological control agents (BCAs) in order to improve yield performance of cultivars characterized by a medium tolerance to the disease. A genetically modified biological control agent, Pseudomonas fluorescens F113Rif (pCUGP), was developed for enhanced production of the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) and lacking an antibiotic resistance marker gene, making the strain suitable for field release. The ability of synthetic Phl and P. fluorescens F113Rif (pCUGP) to antagonize the fungal vector, P betae, was assessed in microcosm trials. Results encouraged the preparation of multiple field trials in a soil naturally infested with P. betae/BNYYV, to determine the biocontrol efficacy of P. fluorescens F113Rif (pCUGP) and to assess its impact on sugarbeet yield and quality and on the indigenous microbial population. While the colonization ability of P. fluorescens F113Rif (pCUGP) was satisfactory at sugarbeet emergence (2.5 × 106 CFU g−1 root), control of rhizomania was not achieved. Inoculation of sugarbeet with Pseudomonas fluorescens F113Rif (pCUGP) did not affect crop yield and quality nor affect the numbers of selected microbial populations.

Keywords

biocontrol 2,4-diacetylphloroglucinol genetically modified microorganism environmental impact Pseudomonas fluorescens rhizomania 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams M J and Swaby A G 1988 Factors affecting the production and mobility of zoospores of Polymyxa graminis and their trasmission of barley yellow mosaic virus (BaYMV). Ann. Appl. Biol. 111,69–78.CrossRefGoogle Scholar
  2. Adams M J, Swaby A G and Macfarlane I 1986 The susceptibility of barley cultivars to barley yellow mosaic virus (BaYMV) and its fungal vector, Polymyxa graminis. Ann. Appl. Biol. 109, 561–572.CrossRefGoogle Scholar
  3. Asher M J C 1988 Approaches to the control of fungal vectors of viruses with special reference to rhizomania. Proceedings of the British Crop Protection Conference, Brighton — Pest and Diseases, pp 615–627.Google Scholar
  4. Asher M J C 1993 Rhizomania. In The Sugar Beet Crop: Science into Practice. Eds. D A Cooke and R K Scott, pp 311–346. Chapman & Hall, London, UK.CrossRefGoogle Scholar
  5. Barea JM, Bianciotto V, Dowling D, Lohrke S, Bonfante P and O’Gara F 1998 Impact on arbuscolar mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant phatogens. Appl. Environ. Microbiol. 64, 2304–2307PubMedCentralPubMedGoogle Scholar
  6. Büttner G and Bürkcy K 1990 Content and distribution of beet necrotic yellow vein virus (BNYVV) in sugar beet varieties with different degrees of susceptibilty to rhizomania. In Proceedings of the First Symposium of the International Working group on Plant Viruses with Fungal Vectors, Braunschweig, Eugen Ulmer, Stuttgart, pp 83–86.Google Scholar
  7. Canova A, Cioni F, Meriggi P, Ponti I, Rossi V and Zavanella M 1998 Study on the yield of sugar beet in rhizomania — infected soils. IIRB, Section Méditerranéenné-Bruxelles, 13 February 1998. pp 59–63.Google Scholar
  8. Capper A L and Higgins K P 1993 Application of Pseudomonas fluorescens isolates to wheat as potential biological control agents against take-all. Plant Pathol. 42, 560–567.CrossRefGoogle Scholar
  9. Carroll H, Moënne-Loccoz Y, Dowling D N and O’Gara F 1995 Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets. Appl. Environ. Microbiol. 61, 3002–3007.PubMedCentralPubMedGoogle Scholar
  10. Clark M F and Adams A N 1977 Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34, 75–483.CrossRefGoogle Scholar
  11. Cook R J 1993 Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phythol. 31,53–80.CrossRefGoogle Scholar
  12. Dowling D N and O’Gara F 1994 Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12, 133–141.CrossRefGoogle Scholar
  13. Duffy B K and Défago G 1997 Zinc improves biocontrol of Fusarium crown and root of tomato by Pseudomoans fluorescens and represses the production of pathogen metabolites inihibitory to bacterial antibiotic biosynthesis. Phytopathology 87, 1250–1257.PubMedCrossRefGoogle Scholar
  14. Dunne C, Crowley, J J, Moënne-Loccoz Y, Dowling D N, de Bruijn F J, and O’Gara F 1997 Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143, 3921–3931.CrossRefGoogle Scholar
  15. Farinha M A and Kropinski A M 1990 High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol. Letts. 70, 221–226.Google Scholar
  16. Figurski D H and Helinski D R 1979 Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76, 1648–1652.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fisher R A and Yates F 1963 In Statistical Tables for Biological, Agricultural and Medical Research. Hafner Publishing, New York.Google Scholar
  18. Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O’Gara F and Haas D 2000 Small, stable shuttle vectors based on the minimal pVS 1 replicon for use in Gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 13, 232–237.PubMedCrossRefGoogle Scholar
  19. Keskin R 1964 Polymyxa betae n. sp. ein Parasitic in den Wurzein von Betae vulgaris Tournefort besonders walurend der Jugendentwicklung der Zuckererrube. Arch. Mickrobiol. 49, 348–374.CrossRefGoogle Scholar
  20. King E O, Ward M K and Raney D E 1954 Two simple media for the demostration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301–307.PubMedGoogle Scholar
  21. Leeman M, Raaijmakers J M, Baker P A H M and Schippers B 1991 Immunofluorescence colony staining for monitoring pseudo-monads introduced into soil. In Biotic Interaction and Soil Borne Disease. Eds Beemster et al. pp 374–380. Elsevier, Amsterdam.Google Scholar
  22. Maurhofer M, Keel C, Schnider C Voisard C, Haas D and Defago G 1992 Influence of enhanced antibiotic production in Pseudomonas fluorescens Strain CHA0 on its disease suppressive capacity. Phytopathology 82, 190–195.CrossRefGoogle Scholar
  23. Maurhofer M, Keel C, Haas D and Defago, G 1995 Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enahanced antibiotic production. Plant Pathol. 44, 40–50.CrossRefGoogle Scholar
  24. Molard R 1985 Rhizomania: a world-wild danger to sugar beet. Span, 28, 92–94.Google Scholar
  25. Molard R 1998 Rhizomanie — Développement en Europe occidentale. IIRB Symposium Rhizomania in Europe, 16-17 September 1998, Budapest, Hungary, pp 29–41.Google Scholar
  26. O’Sullivan D J and O’Gara F 1992 Traits f fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56, 662–676.PubMedCentralPubMedGoogle Scholar
  27. Resca R, Giunchedi L and Poggi Pollini C 1992 Localizzazione immunologica del virus agente della rizomania nell’impronta su membrana di radici di barbabietola. Sementi Elette 3-4, 21–24.Google Scholar
  28. Sambrook J, Frisch E F and Maniatis T 1989 Molecular Cloning: A Laboratory Manual. 2nd Edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY.Google Scholar
  29. Scher F M and Baker R 1982 Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72, 1567–1573.CrossRefGoogle Scholar
  30. Shanahan P, O’Sullivan D J, Simpson P, Glennon J D and O’Gara F 1992 Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58, 353–358.PubMedCentralPubMedGoogle Scholar
  31. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D and Keel C 2000 Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHAO and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 182, 1215–1225.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Tamada T 1975 Beet Necrotic Yellow Vein Virus. CMI/AAB Descriptions of Plant Viruses 144, 4.Google Scholar
  33. Turrina M., Resca R., Cerreta V, Ratti C, Canova A and Rubies-Autonell C 1999 Preliminary molecular characterization of Italian isolates of beet Necrotic Yellow Vein Furovirus (BNYVV). Fourth Symposium of the IWGPVFV. Salinas 4-9 October.Google Scholar
  34. Van Ewijk PH, Hoekstra JA 1993 Calculation of the EC50 and its confidence interval when subtoxic stimulus is present. Ecotoxicol. Environ. Safety 25, 25–32.PubMedCrossRefGoogle Scholar
  35. Voisard C, Bull C T, Keel C, Laville J, Maurhofer M, Schnider U, Défago G and Haas D 1994 Biocontrol of Root diseases by Pseudomonas fluorés cens CHA0: Current concepts and experimental approaches. In Molecular Ecology of Rhizosphere Microorganism: Biotechnology and the Release of GMO’s. Eds. F O’Gara, D N Dowling and B Boesten. pp 67–89, VCH, Weinheim, Germany.CrossRefGoogle Scholar
  36. Weller D M 1988 Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26, 379–407.CrossRefGoogle Scholar
  37. Weiler D M and Thomashow L S 1993 Microbial metabolites with biological activity against plant pathogens. In Pest management: biologically based technologies. Eds R D Lusden and J L Vaughan. pp 173–180. American Chemical Society, Washington, DC.Google Scholar
  38. Williams S T, Goodfellow M, Wellington E M H, Vickers J C, Aiderson G, Sneath P H A, Sackin M J and Mortimer AM 1983 A probability matrix for identification of some streptomycetes. J. Gen. Microbiol. 129, 1815–1830.PubMedGoogle Scholar
  39. Wilson K J, Sessitsch A, Corbo J C, Giller K E, Akkermans A D, Jefferson R A 1995 β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology. 141, 1691–705.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • R. Resca
    • 1
  • M. Basaglia
    • 2
  • S. Poggiolini
    • 3
  • P. Vian
    • 2
  • S. Bardin
    • 6
  • U. F. Walsh
    • 4
  • C. M. Enriquez Barreiros
    • 1
  • F. O’Gara
    • 4
  • M. P. Nuti
    • 5
  • S. Casella
    • 2
  • U. Peruch
    • 3
  1. 1.Eridania Béghin-Say, Centro RicercheMassalombardaItaly
  2. 2.Dipartimento di Biotecnologie AgrarieUniversità di PadovaItaly
  3. 3.AgronomicaRavennaItaly
  4. 4.BIOMERIT Research CentreNational University of Ireland, UCCCorkIreland
  5. 5.Dipartimento di Chimica e Biotecnologie AgrarieUniversità di PisaItaly
  6. 6.Agriculture and Agri-Food CanadaLethbridge Research CentreLethbridgeCanada

Personalised recommendations