Skip to main content

Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies

  • Chapter
Interactions in the Root Environment: An Integrated Approach

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 96))

Abstract

Pseudomonas spp. comprise an important group of bacteria used for biological control of microfungi in the plant rhizosphere. Successful performance of microbial inoculants requires both establishment, proliferation and activity under in situ conditions. To identify the factors controlling fate and performance of the inoculants, small-scale analyses are needed due to the heterogeneity characterizing the complex soil and rhizosphere environments. Direct staining techniques and advanced microscopy have provided the first detailed single-cell images of root colonization by these bacteria using fluorescent antibodies, fluorescent in situ hybridization and marker gene technology. These tracking methods have, in conjunction with activity assays, provided high-resolution data on the metabolic activity and growth of the inoculants. Finally, Pseudomonas reporter bacteria constructed to sense phosphorus, nitrogen, iron, and oxygen limitations have provided new insight into the significance of growth-limiting factors in the soil and along the root. The present work reviews the current knowledge on Pseudomonas inoculants in soil and rhizosphere based on these modern techniques. Finally, some perspectives for future studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl T, Christoffersen K, Riemann B and Nybroe O 1995 A combined microcosm and mesocosm approach to examine factors affecting survival and mortality of Pseudomonas fluorescent Ag1 in seawater. FEMS Microbiol. Ecol. 17, 107–116.

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W and Schleifer K 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Araujo M A V, Mendonca-Hagler L C, Hagler A N and van Elsas J D 1994 Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soil microcosms. FEMS Microbiol. Ecol. 13, 205–216.

    Article  Google Scholar 

  • Beauchamp C J, Kloepper J W and Lemke P A 1993 Lumino-metric analyses of plant root colonization by bioluminescent pseudomonads. Can. J. Microbiol. 39, 434–441.

    Article  Google Scholar 

  • Binnerup S J, Jensen D F, Thordal-Christensen H and Sørensen J 1993 Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol. Ecol. 12, 97–105.

    Article  Google Scholar 

  • Bloemberg G V, O’Toole G A, Lugtenberg B J J and Kolter R 1997 Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63, 4543–4551.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boelens J, Woestyne M V and Verstraete W 1994 Ecological importance of motility for the plant growth-promoting rhizopseudomonas strain ANP15. Soil Biol. Biochem. 26, 269–277.

    Article  Google Scholar 

  • Boye M, Ahl T and Molin S 1995 Application of a strain-specific rRNA oligonucleotide probe targeting Pseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment. Appl. Environ. Microbiol. 61, 1384–1390.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brennerova M V and Crowley D E 1994 Direct detection of rhizosphere-colonizing Pseudomonas sp. using an Escherichia coli rRNA promotor in a Tn7-lux system. FEMS Microbiol. Ecol. 14, 319–330.

    Article  CAS  Google Scholar 

  • Cebolla A, Guzman C and de Lorenzo V 1996 Nondisruptive detection of activity of catabolic promoters of Pseudomonas putida with an antigenic surface reporter system. Appl. Environ. Microbiol. 62, 214–220.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W W and Prasher D C 1994 Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij A J and Lugtenberg B J J 1997 Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol. Plant-Microbe Interact. 10, 79–86.

    Article  CAS  Google Scholar 

  • Christensen H, Hansen M and S0rensen J 1999 Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Environ. Microbiol. 65, 1753–1761.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dandurand L M, Schotzko D J and Knudsen G R 1997 Spatial patterns of rhizoplane populations of Pseudomonas fluorescens. Appl. Environ. Microbiol. 63, 3211–3217.

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Bruijn F J and Rossbach S 1994 Transposon mutagenesis. In Methods for General and Molecular Bacteriology. Ed. P Gerhardt, pp 387–405. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • de Lorenzo V, Herrero M, Sanchez J M and Timmis K N 1998 Mini-transposons in microbial ecology and environmental biotecnology. FEMS Microbiol. Ecol. 27, 211–224.

    Article  Google Scholar 

  • de Weger L A, Dunbar P, Mahaffee W F, Lugtenberg B J J and Sayler G S 1991 Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl. Environ. Microbiol. 57, 3641–3644.

    PubMed Central  PubMed  Google Scholar 

  • de Weger L A, Dekkers L C, van der Bij A J and Lugtenberg B J J 1994 Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and in bulk soil. Mol. Plant-Microbe Interact. 7, 32–38.

    Article  Google Scholar 

  • Errampalli D, Leung K, Cassidy M B, Kostrzynska M, Blears M, Lee H and Trevors J T 1999 Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods 35, 187–199.

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Kragelund L, Nybroe O and S0rensen J 1997 Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol. Ecol. 23, 353–360.

    Article  CAS  Google Scholar 

  • Hojberg O and S0rensen J 1993 Microgradients of microbial oxygen consumption in a barley rhizosphere model system. Appl. Environ. Microbiol. 59, 431–437.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hojberg O, Revsbech N P and Tiedje J M 1994 Denitrification in soil aggregates analyzed with microsensors for nitrous oxide and oxygen. Soil Sci. Soc. Am. J. 58, 1691–1698.

    Article  CAS  Google Scholar 

  • Hojberg O, Schnider U, Winteler H V, Sørensen J and Haas D 1999 Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65, 4085–1093.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeger C H III, Lindow S E, Miller W, Clark E and Firestone M K 1999 Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol. 65, 2685–2690.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansson J K 1998 Marker Genes as Tags for Monitoring Microorganisms in Nature. An Opinion. MAREP (Marker/reporter genes in microbial ecology): A Concerted Action; European Commision Biotechnology Programme, DGXII, Boras, Sweden.

    Google Scholar 

  • Jansson J K and Prosser J I 1997 Quantification of the presence and activity of specific microorganisms in nature. Mol. Biotechnol. 7, 103–120.

    Article  CAS  PubMed  Google Scholar 

  • Jensen L E and Nybroe O 1999 Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Appl. Environ. Microbiol. 65, 4320–4328.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen L E, Kragelund L and Nybroe O 1998 Expression of a nitrogen regulated lux gene fusion in Pseudomonas fluorescens DF57 studied in pure culture and in soil. FEMS Microbiol. Ecol. 25, 23–32.

    Article  CAS  Google Scholar 

  • Kogure K, Simidu U and Taga N 1979 A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Kragelund L and Nybroe O 1996 Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiol. Ecol. 20, 41–51.

    Article  CAS  Google Scholar 

  • Kragelund L, Christoffersen B, Nybroe O and de Bruijn F J 1995 Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation. FEMS Microbiol. Ecol. 17, 95–106.

    Article  CAS  Google Scholar 

  • Kragelund L, Leopold K and Nybroe O 1996 Outer membrane protein heterogeneity within Pseudomonas fluorescens and P. putida and use of an OprF antibody as a probe for rRNA homology group I pseudomonads. Appl. Environ. Microbiol. 62, 480–485.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kragelund L, Hosbond C and Nybroe O 1997 Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl. Environ. Microbiol. 63, 4920–4928.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leopold K, Jacobsen S and Nybroe O 1997 A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker. Microbiology 143, 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  • Lindow S E 1995 The use of reporter genes in the study of microbial ecology. Mol. Ecol. 4, 555–566.

    Article  CAS  Google Scholar 

  • Loper J E and Henkels M D 1997 Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63, 99–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loper J E and Henkels M D 1999 Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65, 5357–5363.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loper J E and Lindow S E 1994 A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60, 1934–1941.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lübeck P S, Hansen M and Sørensen J 2000 Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization technique. FEMS Microbiol. Ecol. 33: 11–19.

    Article  PubMed  Google Scholar 

  • Marschner P and Crowley D E 1996 Physiological activity of a bio-luminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Soil Biol. Biochem. 28, 869–876.

    Article  CAS  Google Scholar 

  • Marschner P and Crowley D E 1997 Iron stress and pyoverdin production by a fluorescent pseudomonad in the rhizosphere of white lupine (Lupinus alba L.) and barley (Hordeum vulgare L.). Appl. Environ. Microbiol. 63, 277–281.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marschner P and Crowley D E 1998 Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (pvd-InaZ). Soil Biol. Biochem. 30, 1275–1280.

    Article  CAS  Google Scholar 

  • Meikle A, Glover L A, Killham K and Prosser J I 1994 Potential luminescence as an indicator of activation of genetically-modified Pseudomonas fluorescens in liquid culture and in soil. Soil Biol. Biochem. 26, 747–755.

    Article  Google Scholar 

  • Meikle A, Amin-Hanjani S, Glover L A, Killham K and Prosser J I 1995 Matric potential and the survival and activity of a Pseudomonas fluorescens inoculum in soil. Soil Biol. Biochem. 27, 881–892.

    Article  CAS  Google Scholar 

  • Nielsen M N, Sørensen J, Fels J and Pedersen H C 1998 Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64, 3563–3569.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Normander B, Hendriksen N B and Nybroe O 1999 Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65, 4646–4651.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nybroe O 1995 Assessment of metabolic activity of single bacterial cells — new developments in microcolony and dehydrogenase assays. FEMS Microbiol. Ecol. 17, 77–84.

    CAS  Google Scholar 

  • Oliver J D 1993 Formation of viable but nonculturable cells. In Starvation in Bacteria. Ed. S Kjelleberg. pp 239–272. Plenum, New York.

    Chapter  Google Scholar 

  • Prosser JI 1994 Molecular marker systems for detection of genetically engineered micro-organisms in the environment. Microbiology 140, 5–17.

    Article  CAS  PubMed  Google Scholar 

  • Prosser J I, Killham K, Glover L A and Rattray E A S 1996 Luminescence-based systems for detection of bacteria in the environment. Crit. Rev. Biotech. 16, 157–183.

    Article  CAS  Google Scholar 

  • Ramos C, Mølbak L and Molin S 2000 Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribo-some contents and synthesis rates. Appl. Environ. Microbiol. 66, 801–809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rattray E A S, Prosser J I, Glover L A and Killham K 1995 Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Appl. Environ. Microbiol. 61, 2950–2957.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravnskov S, Nybroe O and Jakobsen I 1999 Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol. 142, 112.

    Article  Google Scholar 

  • Silcock D J, Waterhouse R N, Glover L A, Prosser JI and Killham K 1992 Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy. Appl. Environ. Microbiol. 58, 2444–2448.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simons M, van der Bij A J, Brand I, de Weger L A, Wijffelman C A and Lugtenberg B J J 1996 Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interactions 9, 600–607.

    Article  CAS  Google Scholar 

  • Simons M, Permentier H P, de Weger L A, Wijffelman C A and Lugtenberg B J J 1997 Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Interact. 10, 102–106.

    Article  CAS  Google Scholar 

  • Sternberg C, Christensen B B, Johansen T, Nielsen A T, Andersen J B, Givskov M and Molin S 1999 Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108–4117.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sørensen J 1997 The rhizosphere as a habitat for soil microorganisms. In Modern Soil Microbiology. Eds. J D van Elsas, J T Trevors and E M H Wellington, pp 21–45. Marcel Dekker, New York.

    Google Scholar 

  • Sørensen S J and Jensen L E 1998 Transfer of plasmid RP4 in the spermosphere and rhizosphere of barley seedling. Antonie van Leeuwenhoek 73, 69–77.

    Article  PubMed  Google Scholar 

  • Tombolini R, van der Gaag D J, Gerhardson B and Jansson J K 1999 Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65, 3674–3680.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Troxler J, Zala M, Natsch A, Moënne-Loccoz Y and Defago G 1997a Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiol. Ecol. 23, 119–130.

    Article  CAS  Google Scholar 

  • Troxler J, Zala M, Moënne-Loccoz Y, Keel C and Defago G 1997b Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens CHA0 in the surface horizon of large outdoor lysimeters. Appl. Environ. Microbiol. 63, 3776–3782.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Unge A, Tombolini R, Mølbak L and Jansson J K 1999 Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol. 65, 813–821.

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Overbeek LS and van Elsas J D 1995 Root exudate-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl. Environ. Microbiol. 61, 890–898.

    PubMed Central  PubMed  Google Scholar 

  • van Overbeek LS, van Elsas J D and van Veen J A 1997 Pseudomonas fluorescens Tn5-B20 mutant RA92 responds to carbon limitation in soil. FEMS Microbiol. Ecol. 24, 57–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David S. Powlson Geoff L. Bateman Keith G. Davies John L. Gaunt Penny R. Hirsch

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sørensen, J., Jensen, L.E., Nybroe, O. (2002). Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. In: Powlson, D.S., Bateman, G.L., Davies, K.G., Gaunt, J.L., Hirsch, P.R. (eds) Interactions in the Root Environment: An Integrated Approach. Developments in Plant and Soil Sciences, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0566-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0566-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3925-3

  • Online ISBN: 978-94-010-0566-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics