Skip to main content

Dark Matter Halo of Our Galaxy

  • Chapter
  • 197 Accesses

Part of the book series: NATO Science Series ((NAII,volume 44))

Abstract

The fascination and the challenge for the search for the constituents of dark matter stem from the connection it bears with astronomy, astrophysics and cosmology on the one hand and with nuclear and particle physics on the other. Dark matter particles are the only relicts that still servive to-day from epochs prior to the primordial helium synthesis which took place at about 400s after the big bang. The first clues pointing to the presence of hidden mass in astronomical systems date-back to the 1920s and 1930s. Kepteyn (1922), Jeans (1922) and Oort (1930) after determining the mass density in the solar neighbourhood had noted that the visible stars contributed only a part to this measured value[1]. Zwicky (1933) measured the velocity dispersion of galaxies in the Coma-cluster (though based on observations of a small number of galaxies) and noted that a substantial part of the mass in the cluster has to be in some unseen form to account for the large observed value of the velocity dispersion[2]. This work was followed up by a few other workers and finally in 1972 based on observations of the velocities of hundreds of galaxies in the cluster, Rood et al., confirmed that atleast 75 % of the mass of the cluster was in some unseen form[3]. As the astronomical observations proceeded with increased vigor, very many ideas to explain the hidden mass were proposed. Among these the most exotic one (for that time) was presented by Cowsik & Mc Clelland (1972, 1973) [>4,5] who suggested that weakly interacting particles with finite rest-mass, generated in the early epochs of a hot big bang universe, would thermodynamically decouple from radiation and matter, and will evolve without substantial annihilation, to form a relict background of particles, which will gravitationally dominate over the normal baryonic matter, trigger the formation of galaxies, and thus generally form halos of invisible dark matter around galactic systems. This set of ideas has been developed and made more sophisticated by the work of many others and forms to-day the basic paradigm for the study of dark matter in the Universe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oort, J.H. (1932) BAN, 6, 249.

    ADS  Google Scholar 

  2. Zwicky, F.(1933) Helvetica Physica Acta, 6, 10.

    Google Scholar 

  3. Rood, HJ., Page, T.L, Kinter, E.C, and King, I.R. (1972) Ap. J., 172, 627.

    Article  ADS  Google Scholar 

  4. Cowsik, R. and McClelland, J. (1972) Phys. Rev. Lett., 29, 669.

    Article  ADS  Google Scholar 

  5. Cowsik, R. and McClelland, J,(1993) Ap. J, 180, 7.

    Article  ADS  Google Scholar 

  6. Roberts, M.S., (1974)in Stars & Stellar Systems, (ed. Sandage, A,)

    Google Scholar 

  7. Vaucouleurs, G.de. (1964) Astrophys. Lett., 4, 17.

    Google Scholar 

  8. Arp, H., and Bertola, F. (1969) ibid 4, 23.

    ADS  Google Scholar 

  9. Shostaki, G.S, and Rogstad, D.H. (1973) A&A, 24, 411.

    ADS  Google Scholar 

  10. Seielstad, G.A, and Wright, M.C.H, (1973) Ap.J, 184, 343.

    Article  ADS  Google Scholar 

  11. Rogstad, D.H. et. al. (1973) A&A., 22, 111.

    ADS  Google Scholar 

  12. Einasto, J. et al., (1974) Nature, 250, 309.

    Article  ADS  Google Scholar 

  13. Ostriker, J.P. et al., (1974) Ap.J. Lett, 193, L1.

    Article  ADS  Google Scholar 

  14. Kahn, F.D., and Woltjer, L., (1959) Ap. J, 130, 705.

    Article  ADS  Google Scholar 

  15. Rubin, V.C, et al. (1980) Ap. J, 238, 471; (1982) Ap. J, 261, 439; (1985) Ap. J, 289,_81; Faber, S.M. and Gallagher, J.S,(1979) ARAA, 17, 135.

    Article  ADS  Google Scholar 

  16. Bahcall, J.N, et al. (1983) Ap. J, 265, 730; (1984) Ap.J, 276 169.

    Article  ADS  Google Scholar 

  17. Brandis, P.de. et al. (2000) Nature 404, 955.

    Article  ADS  Google Scholar 

  18. Fukunda, Y. et al. (1998)(Super-Kamiokande collaboration) Phys. Rev. Lett, 81, (4562); R.Cowsik, (1998) Current Science k75, 558.

    Article  Google Scholar 

  19. Carlberg, R. et al. (1997) Ap. J. 478, 462.

    Article  ADS  Google Scholar 

  20. Evrard, A.E, Mehr, J.J, Febriant, D.G. and Gek, M.J,(1993) Ap.J. Lett. 419, 69 (and refs. therein).

    Article  Google Scholar 

  21. Buries, S. and Tytler, D. (1998) Ap. J, 507, 732; (1998) Ap. J, 499, 699.

    Article  ADS  Google Scholar 

  22. Reiss, A, et. al. (1998) A. J. 116, 1009.

    Article  ADS  Google Scholar 

  23. Perlmutter, S. et. al. (1999) Astro-phy 98/12133.

    Google Scholar 

  24. White, S.D.M. et. al. (1983) ApJ Lett. 274,L1.

    Google Scholar 

  25. Gawiser, E., and Silk, J. (1998) Science 280, 1405.

    Article  ADS  Google Scholar 

  26. Gates, E.I., Turner, M.S. (1994) Phys. Rev. Lett, 72, 2520.

    Article  ADS  Google Scholar 

  27. Deckel, A. (1994) A R AA 32, 371.

    ADS  Google Scholar 

  28. Sigath et al. (1998) Ap. J 495, 516.

    Article  ADS  Google Scholar 

  29. Willick, J. and Strauss, M. (1998) ApJ 507, 64.

    Article  ADS  Google Scholar 

  30. Schmidt, M., (1985) in The Milky Way Galaxy, IAY Symp. 106,75, (eds H. van Woerden et al)

    Google Scholar 

  31. Zeritsky. D, Third Stromlo Symposium, ASP Conference Series 165, 34, 199 (eds: B.K. Gibson et. al.)

    Google Scholar 

  32. Stubbs, C.W, ibid p.503

    Google Scholar 

  33. Turner, M.S., ibid p.431

    Google Scholar 

  34. Cowsik, R. and Ghosh, P. (1987) Ap. J. 317, 26.

    Article  ADS  Google Scholar 

  35. Binney, J. and Tremarne, S. (1987) Galactic Dynamics, (Princeton Univ. Press)

    Google Scholar 

  36. Caldwell, J.A.R, and Ostriker, J.P. (1981) Ap. J, 219, 18.

    Google Scholar 

  37. Kuijken, K. and Gilmore, G. (1989) M.N.R.A.S., 239, 571.

    ADS  Google Scholar 

  38. Fich, M. and Tremaine, (1991) ARAA, 29, 409.

    Article  ADS  Google Scholar 

  39. Cowsik, R, Ratnam, C. and Bhattacharjee, P. (1997) Phys. Rev. Lett., 28 2262.

    Article  ADS  Google Scholar 

  40. Lynden-Bell, D. and Frenk. C.S, (1981) The Observatory 101, 200.

    ADS  Google Scholar 

  41. Lynden-Bell, D, and Lynden-Bell, R.M. (1995) M.N.R.A.S, 275, 429.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cowsik, R. (2001). Dark Matter Halo of Our Galaxy. In: Shapiro, M.M., Stanev, T., Wefel, J.P. (eds) Astrophysical Sources of High Energy Particles and Radiation. NATO Science Series, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0560-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0560-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0174-1

  • Online ISBN: 978-94-010-0560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics