Galactic Cosmic Ray Composition: From the Anomalous Component to the Knee

  • M. I. Panasyuk
Part of the NATO Science Series book series (NAII, volume 44)


The experimental data on the chemical composition of galactic cosmic rays (GCR) are analysed in the energy range between ~10 MeV/nucl and ~ PeV. The lower part of the energy range corresponds to the so-called ‘anomalous cosmic rays’ (ACR); the difference between ACR and more energetic GCR is their charge state which is close to +1, as well as their chemical composition. While the issue of ACR origin is practically resolved, the mechanism of nuclear component acceleration in the energy above hundreds GeV/nucl is still subject to discussion due to the ambiguity of the available experimental data.


Supernova Remnant Anomalous Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kulikov, G.V. and Khristiansen, G.B. (1958) EAS spectrum of all-particles, Zhurnal Experimental’noi i Teoreticheskoi Fiziki 35, 635–640. (in Russian).Google Scholar
  2. 2.
    Shapiro, M. (1962) Supernovae as cosmic ray sources, Science 135, 175–193.ADSCrossRefGoogle Scholar
  3. 3.
    Kalmykov, N.N. and Khristiansen, G.B. (1995) Cosmic rays of superhigh and ultrahigh energies, J. Phys. G: Nucl. Part. Phys. 21, 1279–1301.ADSCrossRefGoogle Scholar
  4. 4.
    Garcia-Munoz, M., Mason, G.M., Simpson, J.H. (1973) A new test for solar modulation theory: the 1972_May–July low energy galactic cosmic ray proton and helium spectra, Astrophys. J. (Lett.). 182, L81–L84.ADSCrossRefGoogle Scholar
  5. 5.
    Panasyuk, M. (1993) Anomalous cosmic ray studies on ‘Cosmos’ satellites, Proc. of the XXIII Int. Cosmic Ray Conference. (Invited, rapporteur and highlight papers), 455–463.Google Scholar
  6. 6.
    Klecker, B. (1995). The anomalous component of cosmic rays in the 3-D heliosphere, Space Science Reviews 72, 419–430.ADSCrossRefGoogle Scholar
  7. 7.
    Fisk, L.A., Kozlovskiy, B., Ramaty, R. (1974) An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. Astrophys. J. (Lett.) 190, L35–L38.ADSCrossRefGoogle Scholar
  8. 8.
    Hovestadt, D.O., Valmer, O., Gloeckler, G., Fan, C. (1973) Differential energy spectra of low-energy (8.5 MeV per nucléon) heavy cosmic rays during solar quiet times, Phys. Rev. Lett. 31, 650–667.ADSCrossRefGoogle Scholar
  9. 9.
    Mewaldt, R.A., Selesnick, R.S., Cummings, J.R., Stone, E.C., Von Rosenvinge, T.T. (1996) Evidence for multiply charged anomalous cosmic rays, Astrophys. J. 466, L43–L46.ADSCrossRefGoogle Scholar
  10. 10.
    Adams, J.H., Garcia-Munoz, M., Grigorov, N.L., Klecker, B., Kondratyeva, M.A., Mason, G.M., McGuire, E., Mewaldt, R., Panasyuk, MX, Tretyakova, Ch.A., Tylka, A.J., Zhuravlev, D.A. (1991) The charge state of the anomalous component of cosmic rays, Astrophys J.(Lett) 375, L45–L48.ADSCrossRefGoogle Scholar
  11. 11.
    Blake, J.B. and Friesen, L.M. (1977). A technique to determine the charge state of the anomalous low energy cosmic rays., Proc. of the 15th ICRC 2, 341–346.Google Scholar
  12. 12.
    Grigorov, N.L., Kondratyeva, M.A., Panasyuk, M.I., Tretyakova, Ch.A., Adams, J.H., Blake, J.B., Shultz, M., Mewaldt, R.A., Tylka A.J. (1991) Evidence for trapped anomalous cosmic ray oxygen ions in the inner magnetosphere, Geophys. Res. Letters 18, 1959–1962.ADSCrossRefGoogle Scholar
  13. 13.
    Selesnik, R.S., Cummings, A.C., Cummings, J.R., Mewaldt, R.A., Stone, E.C., Von Rosenvinge, T.T. (1995). Geomagnetically trapped anomalous cosmic rays, J. Geophys. Res. 100, 9503–9509.ADSCrossRefGoogle Scholar
  14. 14.
    Grigorov, N.L., Nesterov, V.E., Rappoport, I.D. (1970) Measurements of particle spectra on the ‘Proton-1,2,3’ satellites, Yadernaya fizika 11, 1058–1067. (in Russian).Google Scholar
  15. 15.
    Shibata, T. (1996) Cosmic Ray spectrum and composition: direct observation, Nuovo Cimento 19, 713–721.CrossRefGoogle Scholar
  16. 16.
    Watson, A.A. (1998) Charged cosmic rays above 1 TeV, Invited, Rapporteur and Highlight Papers of the 25th ICRC 8, 257–280.Google Scholar
  17. 17.
    Panasyuk, M.I. (1998) Galactic Cosmic Ray Composition, Proc. 16th European Cosmic Ray Symposium, 235–244.Google Scholar
  18. 18.
    Ryazhskaya, O.G. (1996) Muons and neutrinos in the cosmic radiation, Nuovo Cimento 19, 655–670.CrossRefGoogle Scholar
  19. 19.
    Grigorov, N.L., and Tolstaya, E.D. (1998) How many ‘knees’ does the galactic cosmic ray spectrum have?, Preprint INP MSU -98-8-509, Skobeltsyn Institute of Nuclear Physics.Google Scholar
  20. 20.
    Berezhko, E.G. (1996) Maximum energy of cosmic rays accelerated by supernova shocks, Astroparticle Physics 5, 367–378.ADSCrossRefGoogle Scholar
  21. 21.
    Ellison, D.C., Drury, L., Meyer, J.P. (1997) Galactic cosmic rays from supernova remnants, II. Shock acceleration of gas and dust, Astrophys. J. 487, 197–217.ADSCrossRefGoogle Scholar
  22. 22.
    Hörandel, J.R. (1998) Cosmic-ray mass composition in the PeV region estimated from the hardronic component of EAS, Proc. of the 16th European Cosmic Ray Symposium, 579–582.Google Scholar
  23. 23.
    Weber, J.H. (1998) Estimation of the chemical composition in the ‘knee’ region from the muon/electron ratio in EAS., Proc. of the 16th European Cosmic Ray Symposium, 567–570.Google Scholar
  24. 24.
    Erlykin, A.D., Wolfendale, A.w. (1998) High-energy cosmic ray spectroscopy, Astroparticle Physics 8, 265–281.ADSCrossRefGoogle Scholar
  25. 25.
    Kuzmichev, L.A., Antonov, R. A. (2000) Personal communication.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. I. Panasyuk
    • 1
  1. 1.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityVorob’ovy Gory, MoscowRussia

Personalised recommendations