Skip to main content

Variables Gamma Ray Sources, 2: Interactions of Galactic Cosmic Rays with Solar and Stellar Winds

  • Chapter
Astrophysical Sources of High Energy Particles and Radiation

Part of the book series: NATO Science Series ((NAII,volume 44))

  • 200 Accesses

Abstract

By data obtained from investigations of hysteresis phenomenon in dependence of galactic cosmic ray intensity from solar activity we determine the change of cosmic ray density distribution in the Heliosphere during solar cycle in dependence of particle energy. On the basis of observation data and investigations of cosmic ray nonlinear processes in the Heliosphere we determine the space-time distribution of solar wind matter. Then we calculate the generation of gamma-rays by decay of neutral pions generated by nuclear interactions of modulated galactic cosmic rays with solar wind matter and determine the expected space-time distribution of gamma-ray emissivity. On the basis of these results we calculate the expected time variation of the angle distribution and spectra of gamma ray fluxes generated by interaction of modulated galactic cosmic rays with solar wind matter for local (inside the Heliosphere) and distant observers (for stellar winds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dorman, L.I. (1996) Cosmic ray nonlinear processes in gamma-ray sources, Astronomy and Astrophysics, Suppl. Ser., 120, No. 4, 427–435.

    Google Scholar 

  2. Dorman, L.I. (1997) Angle distribution and time variation of gamma ray flux from solar and stellar winds, 2. Generation by galactic cosmic rays, in C.D. Dermer, M.S. Strickman, and J.D. Kurfess (eds.), Proc. 4th Compton Symposium, AIP Conference Proceedings 410, Williamsburg, VA, Part 2, 1183–1187.

    Google Scholar 

  3. Berezinskii, V.S., Bulanov, S.V., Ginzburg, V.L., Dogiel, V.A., and Ptuskin, V.S. (1990) Cosmic Ray Astrophysics, Fyzmatgiz, Moscow.

    Google Scholar 

  4. Dorman, L.I., Ptuskin, V.S. and Zirakashvili, V.N. (1990) Outer Heliosphere: pulsations, cosmic rays and stream kinetic instability, in S. Grzedzielski and D.E. Page (eds.) Physics of the Outer Heliosphere, Pergamon Press, pp. 205–209.

    Google Scholar 

  5. Zirakashvili, V.N., Dorman, L.I., Ptuskin, V.S. and Babayan, V.Kh. (1991) Cosmic ray nonlinear modulation in the outer Heliosphere. Proc.22-th Intern. Cosmic Ray Conf., Dublin, Vol.3, pp 585–588.

    Google Scholar 

  6. Dorman, L.I. (1995) Cosmic ray nonlinear effects in space plasma, 2. Dynamic Heliosphere, in M.M. Shapiro, R. Silberberg and J.P. Wefel (eds.). Currents in High Energy Astrophysics, Kluwer Academic Publishers., Dordrecht/Boston /London, NATO ASI Serie, Vol. 458, pp. 193–208.

    Chapter  Google Scholar 

  7. Le Roux, J.A. & Fichtner, H., (1997) The influence of pickup, anomalous, and galactic cosmic ray protons on the structure of the heliospheric shock: a self consistent approach, Ap. J, 477, L115–L118.

    Article  ADS  Google Scholar 

  8. Stecker, F.W. (1971) Cosmic Gamma Rays, Mono Book Co, Baltimore.

    Google Scholar 

  9. Dermer, C.D. (1986) Secondary production of neutrl pi-mesons and the diffuse galactic gamma radiation, A&A, 157, No. 2, 223–229.

    ADS  Google Scholar 

  10. Dermer, CD. (1986) Binary collision rates of relativistic thermal plasmas, II-Spectra, Ap. J, 307, 47–59.

    Article  ADS  Google Scholar 

  11. Dorman, L.I. (1957) Cosmic Ray Variations, Gostekhtheorizdat, Moscow (English translation published in 1958 by Research Division of Ohio Air-Force Base, USA).

    Google Scholar 

  12. Dorman, L.I. (1963) Cosmic Ray Variations and Space Research, Nauka, Moscow.

    Google Scholar 

  13. Dorman L.I. (1963) Astrophysical and Geophysical Aspects of Cosmic Rays, in J.G. Wilson and S.A. Wouthuysen (eds.) Progress of Cosmic Ray and Elementary Particle Physics, North-Holland Publ. Co., Amsterdam, Vol. 7.

    Google Scholar 

  14. Dorman, L.I. (1974) Cosmic Rays: Variations and Space Exploration. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  15. Dorman, L.I. (1975) Variations of Galactic Cosmic Rays, Moscow University Press, Moscow

    Google Scholar 

  16. Parker, E.N. (1963) Interplanetary Dynamically Processes, Intersci. Publ., New York-London.

    Google Scholar 

  17. Dorman, L.I. (1959) To the theory of cosmic ray modulation by solar wind, Proc. of 6-th Intern. Cosmic Ray Conf, Moscow, Vol. 4, pp. 328–334.

    Google Scholar 

  18. Simpson J.A., 1983, Ann. Rev. Nucl. Particle Physics, 33, 323.

    Article  ADS  Google Scholar 

  19. Dorman, L.I. (1975) Experimental and Theoretical Foundations of Cosmic Ray Astrophysics, Fizmatgiz, Moscow.

    Google Scholar 

  20. Belov, A.V., Gushchina, R.T., Dorman, L.I., and Sirotina, I.V. (1988) Rigidity dependence of cosmic ray modulation parameter in the different epoch of solar activity cycle, Izvestia Ac. of Sci. of USSR, Ser. Phys., 52, N 12, pp. 2334–2337.

    Google Scholar 

  21. Belov, A.V., Gushchina, R.T., Dorman, L.I., and Sirotina, I.V. (1990) Rigidity spectrum of cosmic ray modulation, Proc. 21-th Intern. Cosmic Ray Conf., Adelaide, Vol. 6, pp. 52–55.

    Google Scholar 

  22. Dorman, I.V., and Dorman, L.I., (1967) Solar wind properties obtained from the study of the 11-year cosmic ray cycle, J. Geophys. Res. 72, 1513–1520.

    Article  ADS  Google Scholar 

  23. Dorman, I.V. & Dorman, L.I. (1967) Propagation of energetic particles through interplanetary space according to the data of 11-year cosmic ray variations. J. Atmosph. and Terr. Phys., 29, No.4, 429–449.

    Article  ADS  Google Scholar 

  24. Dorman, I.V. & Dorman, L.I. (1968) Hysteresis phenomena in cosmic rays, properties of solar wind and energetic spectrum of different nuclei in the Galaxy, Proc. 5-th All-Union Winter School on Cosmophysics, Apatity, pp. 183–196.

    Google Scholar 

  25. Alania, M.V., and Dorman, L.I. (1981) Cosmic Ray Distribution in the Interplanetary Space. Metsniereba, Tbilisi.

    Google Scholar 

  26. Alania, M.V., Dorman, L.I., Aslamazashvili, R.G., Gushchina, R.T., and Dzhapiashvili, T.V. (1987) Galactic Cosmic Ray Modulation by Solar Wind. Metsniereba, Tbilisi.

    Google Scholar 

  27. Dorman, L.I., Villoresi, G., Dorman, I.V., Iucci, N., and Parisi, M. (1997) High rigidity CR-SA hysteresis phenomenon and dimension of modulation region in the Heliosphere in dependence of particle rigidity, Proc. of 25-th Intern. Cosmic Ray Conference, Durban (South Africa), Vol. 2, pp 69–72.

    Google Scholar 

  28. Dorman, L.I., Villoresi, G., Dorinan, I.V., Iucci, N., and Parisi, M. (1997) Low rigidity CR-SA hysteresis phenomenon and average dimension of the modulation region and Heliosphere, Proc. of 25-th Intern. Cosmic Ray Conference, Durban (South Africa), Vol. 2, pp 73–76.

    Google Scholar 

  29. Dorman, L.I. (1975) Variations of Galactic Cosmic Rays, Moscow Univ. Press, Moscow

    Google Scholar 

  30. Zusmanovich, A.G., (1986) Galactic Cosmic Rays in the Interplanetary Space, Nauka, Alma-Ata

    Google Scholar 

  31. Dorman, L.I. (2001) Cosmic ray long-term variation: even-odd cycle effect, role of drifts, and the onset of cycle 23, Advances in Space Research, D 1.1–0037.

    Google Scholar 

  32. Dorman, L.I., Dorman, I.V., Iucci, N., Parisi, M., and Villoresi, G. (2001) Solar activity-cosmic rays hysteresis phenomenon during cycle 22 and determination of drift effects role and modulation region dimension, Advances in Space Research, Paper D 1.1–0038.

    Google Scholar 

  33. Burger, R.A., and Potgieter, M.S. (1999) The effect of large heliospheric current sheet tilt angles in numerical modulation models: a theoretical assessment, Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, Vol. 7, pp. 13–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dorman, L.I. (2001). Variables Gamma Ray Sources, 2: Interactions of Galactic Cosmic Rays with Solar and Stellar Winds. In: Shapiro, M.M., Stanev, T., Wefel, J.P. (eds) Astrophysical Sources of High Energy Particles and Radiation. NATO Science Series, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0560-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0560-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0174-1

  • Online ISBN: 978-94-010-0560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics