Skip to main content

Investigations on the Synthesis, Characterization and Hydrogenation Behaviour of Mg Based Composite Materials Mg-xwt.% CFMmNi5 Prepared Through R.F. Induction Melting and Mechanical Alloying — A Comparative Study

  • Chapter
Hydrogen Materials Science and Chemistry of Metal Hydrides

Part of the book series: NATO Science Series ((NAII,volume 71))

  • 386 Accesses

Abstract

Alloys with general formula Mg-xwt.% CFMmNi5 (x=30) have been successfully synthesized through R.F. induction melting and mechanical alloying employing high energy attritor ball mill. The hydrogenation and dehydrogenation behaviour of these ew composite materials has been extensively investigated. In the present study, the high magnesium content of the composite alloy typically 70wt.% Mg + 30wt.% CFMmNis synthesized through conventional melting using radio frequency induction furnace and unconventional route of mechanical alloying (ball milling). The various experimental parameters such as time duration, speed of milling and medium of milling have been optimized in order to obtain composite alloys with favourable sorption characteristics. The as-synthesized composite materials have been activated at around 400° C under a hydrogen pressure of ∼40 kg cm-2 and their hydrogen storage capacities and desorption kinetics have been evaluated. The new composite hydrogen storage materials milled under hexane medium for 5 hrs duration at a speed of 400 rev. min-1 exhibits higher storage capacity of ∼5.4 wt.% in contrast to their thermally melted counterparts (∼4.9 wt.%) at 350° C. It is also established that the rate of desorption of hydrogen from the mechanically alloyed sample are much faster (about 90 cm3 min1 gm-1) than the R.F. induction melted alloys (about 50–60 cm3 min-1 gm-1). The hydriding rate and the improved hydrogen storage capacity of these composite materials have found to be strongly correlated with the structural and microstructural characteristics as brought out through XRD and SEM explorations. From the extensive analysis, it was found that the mechanically alloyed samples are superior over the conventional melting samples in regard to the scalability and hydrogenation-dehydrogenation characteristics. This may be due to the availability of large number of grain boundaries, reduction in particle size and presence of fresh surface by which the hydrogen gets adsorbed in addition to bulk absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson A.F. and Maeland A.J., in Hydrides for Energy Storage, Pergamon Press, Oxford (1978).

    Google Scholar 

  2. Westlake D.G., Satterthwaite C.B. and Weaver J.N., Phys. Today, 31 (1978) 32.

    Article  Google Scholar 

  3. Reilly J.J. and Sandrock G.D., Scient. Am., 242 (1980) 118.

    Article  Google Scholar 

  4. Sandrock G.D. and Huston E.L., Chem. Tech., 11 (1981) 754.

    Google Scholar 

  5. Reilly J.J. and Wiswall R.H. Jr., Inorg. Chem., 7 (1968) 2254; Wiswall R.H. Jr., and Reilly JJ., Proc. 7th Intersociety Energy Conversion Engg. Conf. (IECEC), San Diego (1972) 1342; Waide C.H., Reilly JJ. and Wiswall R.H. Jr., Proc. Hydrogen Economy Miami Energy Conf. (THEME), Miami Beach, Florida (1974) 770, Plenum Press, New York (1975).

    Article  Google Scholar 

  6. Reilly JJ. and Wiswall R.H. Jr., Inorg. Chem., 13 (1974) 218.

    Article  Google Scholar 

  7. Van Vucht J.H.N., Kuijpers F.A. and Burning H.C.A., Philips Res. Rep., 25 (1970) 133.

    Google Scholar 

  8. Nagai H. Tomizawa H., Ogasawara T. and Shojii K., J. Less Common Metals, 157 (1990) 15–24.

    Article  Google Scholar 

  9. Fujii H., Orimo S. and Yamamoto K., J. Less Common Metal, 175 (1991) 243–257.

    Article  Google Scholar 

  10. Ye Z., Erickson L.C. and Hjoravarsson B., J. Alloys and Comp., 209 (1994) 117–124.

    Article  Google Scholar 

  11. Dutta K. and Srivastava O.N., J. Matter Sci. 28 (1993) 3457–3462.

    Article  Google Scholar 

  12. Mandal P. and Srivastava O.N. J. Alloys and Compounds, 205 (1994) 111–118.

    Article  Google Scholar 

  13. Terzieva M., Khrussanova M., Peshev P. and Radev D., Int. J. Hydrogen Energy, 20 (1995) 53–58.

    Article  Google Scholar 

  14. Liang G., Boily S., Huot J., VenNeste A. and Shulz R., J. Alloys and Comp., 268 (1998) 302–307.

    Article  Google Scholar 

  15. Gross K.J. Satz P., Zuttel A. and Schlapbach L., J. Alloys and Comp., 261 (1997) 276–280.

    Article  Google Scholar 

  16. Imamura H. and Sakashi N., J. Alloys and Comp., 231 (1995) 810–814.

    Article  Google Scholar 

  17. Terzieva M., Khrussanova M. and Peshev P., J. Alloys and Compounds 267 (1998) 235–239.

    Article  Google Scholar 

  18. Sai Raman S.S. and O.N. Srivastava, J. Alloys and Comp., 241 (1996) 167–174.

    Article  Google Scholar 

  19. Davidson DJ., Sai Raman S.S. and Srivastava O.N., J. Alloys and Comp., 292 (1999) 194–201.

    Article  Google Scholar 

  20. Sai Raman S.S., Davidson DJ. and Srivastava O.N., J. Alloys and Comp., 292 (1999) 202–211

    Article  Google Scholar 

  21. Singh S.K., Singh A.K., Ramakrishna K. and Srivastava O.N., Int. J. Hydrogen Energy, 10(1985) 523–529.

    Article  Google Scholar 

  22. Dutta K. and Srivastava O.N., Int. J. Hydrogen Energy, 15 (1990) 341.

    Article  Google Scholar 

  23. Benjamin J.S., Sci. Am., 234, 6 (1976) 40–48.

    Article  Google Scholar 

  24. Koch C.C., in Processing of Metals and Alloys: Materials Science and Technology a comprehensive treatment, 15 (1991) 193–245.

    Google Scholar 

  25. Singh S.K., Singh A.K., Ramakrishna K. and Srivastava O.N., Int. J. Hydrogen Energy, 14(1989)573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raman, S.S.S., Davidson, D.J., Srivastava, O.N. (2002). Investigations on the Synthesis, Characterization and Hydrogenation Behaviour of Mg Based Composite Materials Mg-xwt.% CFMmNi5 Prepared Through R.F. Induction Melting and Mechanical Alloying — A Comparative Study. In: Hampton, M.D., Schur, D.V., Zaginaichenko, S.Y., Trefilov, V.I. (eds) Hydrogen Materials Science and Chemistry of Metal Hydrides. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0558-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0558-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0731-6

  • Online ISBN: 978-94-010-0558-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics