The Study of the Effect of Hydrogen on Physical-Mechanical Properties of Steel by Acoustic Microscopy Methods

  • A. I. Kustov
  • A. V. Budanov
  • I. A. Migel
Part of the NATO Science Series book series (NAII, volume 71)


The paper deals with the perspectives of the application of acoustic microscopy methods for studying the effects of hydrogen on physical-mechanical properties of steel. The basic principles of the methods as well as the results of the experiments of studying the structure of steel and its transformation upon changing the composition and types of thermomechanical treatment are given in the article. The high sensitivity to non-heterogeneity and defects upon acoustic visualization and in the regime of determining physic-mechanical properties are demonstrated. Calculation of the dependencies of energy distribution of acoustic waves on the surface of an object gives us the possibility to determine the depths of the location of defects and evaluate the possibilities of their visualization. It is shown that acoustic microscopy methods are perspective for revealing the presence of dissolved hydrogen, local changes of values of physic-mechanical properties of materials. They enable us to reveal microcracks of flocks type with dimensions up to 0.2–0.6 μm, micropores, to calculate local values of elasticity module and module of shift, to determine the incubation period of originating of investigating defects.


Acoustic Wave Surface Acoustic Wave Angular Spectrum Acoustic Image Acoustic Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Кустов А. И. Изучение структуры и физико-механических свойств твердотельных материалов методами акустической микроскопии // Матер. VII Рос. конф. “емпфирующие материалы”. 1994. С. 89-97.Google Scholar
  2. 2.
    Куэйт К. Ф., Аталар А., Викромасингх X. К. Акустическая микроскопия с механическим сканированием // Тр. Института инженеров электроники и радиотехники. 1979. Т. 67. №8. С. 5-31.Google Scholar
  3. 3.
    Wilson R. G., Weglein R. D. Acoustic microscopy of materials and surface layers // Appl. Phys. 1994. V. 55. N 9. P. 3261–3275.Google Scholar
  4. 4.
    Кустов А. И., Мигель И. А. Исследование физико-механических характеристик стекол с помощью акустических волн // Физ. и хим. стекла. 1996. Т. 22. № 3. С. 329-333.Google Scholar
  5. 5.
    Atalar A. An angular spectrum approach to contrast in reflection acoustic microscopy // J. Appl. Phys. 1978. V. 49. N 10. P. 5130–5139.CrossRefGoogle Scholar
  6. 6.
    Parmon W., Bertoni H. L. Ray interpretation of the material signatures in the acoustic microscope // Elec. Lett. 1979. V. 15. N 21. P. 684–686.CrossRefGoogle Scholar
  7. 7.
    Коллингз E. В. Физическое металловедение титановых сплавов. М.: Мир, 1988. 224 с.Google Scholar
  8. 8.
    Викторов Н. А. вуковые поверхностные волны в твердых телах. М.: Наука, 1981.287 с.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • A. I. Kustov
    • 2
  • A. V. Budanov
    • 1
  • I. A. Migel
    • 2
  1. 1.Voronezh State Technology AcademyVoronezhRussia
  2. 2.Voronezh Military Air Engineering InstituteVoronezhRussia

Personalised recommendations