Skip to main content

Landmine Problem and Multisensor Detection

  • Chapter
Multisensor Fusion

Part of the book series: NATO Science Series ((NAII,volume 70))

  • 1145 Accesses

Abstract

The mine warfare in the 20th century has a history of near hundred years, related with countless military conflicts all over the world. As it is documented, the first systematic and large-scale application of mines took place during the siege of the Russian Army by Japanese at Port Arthur and Mukden in 1904. There the protection of Russian trenched positions by minefields with electric ignition was responsible for the major part of the near 120,000 casualties from the Japanese side [48].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubey, A.C., Harvey, J.F., and Broach, J.T. (1998), Proc. SPIE Conf. on Detection and Remediation Technologies for Mines and Minelike Targets III, Orlando, Florida, Edit, v. 3392.

    Google Scholar 

  2. Book of Abstr., 3-th Intern. Symp. on Technology and Mine Problem, Naval Post-Graduate school, Monterey, CA, June 1998.

    Google Scholar 

  3. Book of Abstr., 4-th Intern. Symp. on Technology and Mine Problem, Naval Post-Graduate School, Monterey, CA, June 2000.

    Google Scholar 

  4. Proa 2-nd Intern. Conf. On Detection of Abandoned Land Mines, Edinburg, UK, 12–14 October 1998, London, UK, ANCORE Corp., Buried Landmine Specific Sensor based on Thermal Neutron Analysis, http://www.ancore.com

    Google Scholar 

  5. Baertlein B., Gunatilaka, A., Improving Detection of Buried Mines Through Sensor Fusion, in Ref.I, p. 1123–1133.

    Google Scholar 

  6. Blough, D., Scalable and Reliable Software for Cooperating Robots, DOE Prop., UCI, 1999

    Google Scholar 

  7. Bottoms, A., (1998) Mine Problem Issue, In: Ref. III, # 4 BODF, Land Mine Facts, Briefing Materials for LLNL Press Conference at BODF, Nevada Test Site.

    Google Scholar 

  8. Brooks, J., Applications of GPR Technology to Humanitarian Demining Operations in Cambodia: Some Lessons Learned, in Ref II p. 55

    Google Scholar 

  9. Burlage, R. T. Youngblood, Bioreporter Bacteria for Landmine Detection, in Ref II, p. 69

    Google Scholar 

  10. Bruschini C., Gross, B., (1997) A Survey of Current Sensor Technology Research for the Detection of Landmines, Presented, at Intern. Workshop on Sustainable Humanitarian Demining, SusDem’97, 29 Sept., 97, Zagreb, Croatia, <http://didecsl-f.epfl.ch/w31ami/detec/susdensurvey.html

  11. Bruschini C, De Bryun, K., Sahli, H., et al, (1999) Study of the State of the Art in the EU related to Humanitarian Demining Technology, Products and Practice, EUDEM: The EU in Humanitarian Demining, Final Report, Ecole Polyutechnique Fed., Losanne, Brussels, 30-07.

    Google Scholar 

  12. Bystritsky, V., Kobzev, A., Mialkovsky, V., Nikitin, V., et al., Experiments on Hidden Substances Identification with neutron probing via Associated Particle Registration, in Ref 3, paper # 90.

    Google Scholar 

  13. Bystritskii, V., Toor, A., Pekarskii, G., (1998) Testing of Russian technology for Field Demining Operation, UCI-LLNL Agreement # B339039, CA.

    Google Scholar 

  14. Bystritskii, V., Svetsov, V., (1999) Neutron Imaging for Land Mine Detection, CRDF Prop. FSU-USA UCI, CA.

    Google Scholar 

  15. Coutsomitros, C, Kokonozi, A., Andsritsos, F., et al., (1999) Target Identification in Civilian De-Mining, Using Weak IR Activation Methods, Technical Note, Pub. of European Commission, Joint Research Center, Ispra, Italy.

    Google Scholar 

  16. Castigliochello Conf. on Nuclear and Conventional Disarmament, 1997.

    Google Scholar 

  17. Chatterjee, C., Infrared-Based Land Mine Detection on a Vehicle, in. Ref I, pp. 104–114

    Google Scholar 

  18. Churchill, W.C., (1989) The Second World War, Penguin Books, pp 174–176

    Google Scholar 

  19. Cressie, N., A. Lawson, Bayesian Hierarchial Analysis of the Mine Field Data, in: Ref I, p. 941.

    Google Scholar 

  20. Daniels D. J., (1996) Surface penetrating Radar, IEE Radar, Sonar, Navigation and Avionics, Series 6, 300 p. ISBN 0852968620

    Google Scholar 

  21. DeLuca, C, Marinelli, V., Ressler, M., and Ton, T., Unexploded Ordnance Detection Experiments Using Ultra wide band Synthetic Aperture Radar, in: Ref I, pp. 668–677

    Google Scholar 

  22. Ericsson, A., Gustafsson, A., Detection and Classification Results for an Impulse radar Mine Detecting System, in SPIE97, p. 636–642. http://www.ac.Chalmers.se/~brunzell//project.html

  23. Fisher, M., Cumming, C, Fox, M., et al., (2000) A Man-Made Chemical Sniffer Utilizing Novel Fluorescent Polymers, for Detection of Ultra-Trace Concentrations of Explosives Emanating from Landmines”, Book of Abst., Monterey.

    Google Scholar 

  24. Flynn, M., (1999) Political Minefield, Bulletin of Atomic Scientist, p. 49–53.

    Google Scholar 

  25. Freeman, J., Skapura, D., (1997) Neural Networks, Applications, and Programming Techn., Addison Wesley.

    Google Scholar 

  26. Fritzsce, M., Lohlein, O., (1998) Multisensor Fusion for the Detection of Buried Landmines, In: Proc. of EuroFusio 98. International Data Fusion Conference, Great Malvern, UK, 6-7 Oct. 1998, Edited by: Bedworth, M., O’Brien, J. Malvern, UK, DERA, p. 93–100

    Google Scholar 

  27. Gelenbe, E., T. Kosak, Area based Results for Mine Detection, in: Ref I, p. 894–905.

    Google Scholar 

  28. Glascock, Practical Applications of Neutron Capture and Prompt Gamma-Rays, Instr. Phys. Conf, Ser. 62, Ch. 4, p. 641–654, 1981.

    Google Scholar 

  29. Gomez, B., Jones, E., Rodacy, P., et al., Trace Chemical Detection of Mines and Unexploded Ordnance, in: Ref I, p. 42

    Google Scholar 

  30. Gozai, T., Industrial Applications of Neutrons, Physcs Methods, Proc. Intern. Conf. On Reactor Physics, Tel-Aviv, 1994, p. 199–214.

    Google Scholar 

  31. Harvey, J. T. Broach, Orlando, in: Ref. I, pp. 1111-1121

    Google Scholar 

  32. Hibbs, A. D., Barrall, G.A., Czipott, P. V., et al., (1998) Man Portable Detector Using Nuclear Quadrupole Resonance-First Year Progress and Tests Results, in Detection of Abandoned Land Mines, 12-14 Oct. 1998, Conference Publications, No 458, IEE.

    Google Scholar 

  33. Honeger, B., Symposium Overview, Demine Website, Ref. 1

    Google Scholar 

  34. Huang, Q., R. Azimi-Sadjadi, S. Sheedvash, Structurally Adaptive neural network for Underwater Target Classification, in: Ref. I, p. 941–951

    Google Scholar 

  35. Jacobs, J., Dugan, E., Jacobs, A., et al., Examination of Cross-Talk Between Adjacent X-ray Generator-Detector Systems, in: Ref. I, p. 868.

    Google Scholar 

  36. Khanna S., M, Paquet, F., Apps, R., Seregelyi, J.S., New Hybrid Remote Sensing Method.

    Google Scholar 

  37. Krumhansl, P., (1998) “Seismic Sonar for landmine and UXO Detection and Classification, In: Book of Abst., Symp. on Technology and the Mine Problem, Naval Postgraduate School, Monterey, CA, p. 56

    Google Scholar 

  38. Lorengan, M., Severin, E., Doleman, B., Lewis, N., Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black Polymer Resistors, ibid., p. 102.

    Google Scholar 

  39. Magand, F., Chevret, P., (1996) Time Frequency Analysis of Energy Distribution for Circumferential Waves on Cylindrical Elastic Shells, Acustica United with Acta Acustica, p. 707–716.

    Google Scholar 

  40. Maglich, B., Powell, C, Kani, K., etc., (1998) Atometry, Hienergy Report, HIEN98–111.

    Google Scholar 

  41. Maglich, B., Development of Gamma Nose for Humanitarian De-Mining: Evidence for On-Line

    Google Scholar 

  42. MATLAB Image Processing Toolbox User’s Guide”, Mathworks, Inc., Natick, MA, 1997

    Google Scholar 

  43. McDonald, J.R., Nelson, H.H., Robertson, RR., “Results of the MTADS Technology Demonstration at the Magnetic Test Range”, marine Corps Air Ground Combat center, Twenty-nine Palms, CA, NRL/PU/6110-97-XXX.

    Google Scholar 

  44. McFee, J., Cousins, T., Jones, T., et al., Thermal Neutron Activation System for Confirmatory Nonmetallic Land Mine Detection”, In Ref. I p. 553–564

    Google Scholar 

  45. McCullough C, Ulug, M., (1999) Feature and data Level Fusion of Infrared and Visual Images, presented at the SPIE AeroSense Conference, Orlando, FL.

    Google Scholar 

  46. McFee, J., Das, Y. “Advances in the Location and Identification of Hidden Explosive.

    Google Scholar 

  47. McFee, J., Aitrken, V., Chesney, R., Das, Y., Russel, K., A Multisensor, Vehicle Mounted, Tele-operated Mine Detector with Data Fusion, in: Ref. I, p. 1082–1093

    Google Scholar 

  48. Nardulli, G., Marangi, C, Trends in Landmine Warfare and Landmine Detection, http://www.ba.infn.it/~nardulli/castiglionchello.html_#3.2._Presented_at_the_VII_Int.

  49. Ngan, P., Data Fusion technique for Hand-Held Stand-off Mine Detection System (HSTAMIDS), Ref. I. P. 1150–1162

    Google Scholar 

  50. Pekarsky, G., (1994) Neutron technologies and Devices for Non-Destructive Testing and identification of Explosives and Chemical Warfare Agents, Proc. Intern. Conference on Nondestructive Testing in Science and Industry, Moscow, p. 198.

    Google Scholar 

  51. Pekarskii, G. Multisensor Technology for Buried Mines Detection, in: Ref lV, p. 147–151.

    Google Scholar 

  52. Petterson, G., Stromberg, D., Roldan-Prado, R., (1998) Temporal Decision Support and data Fusion in BVR Combat, Eurofusion98, Great Malvern, UK.

    Google Scholar 

  53. Porter, L., Sparrow, D., (1997) Assessment of Thermal Neutron Activation Applied to Surface and near Surface Unexploded ordnance, IDA Paper P-3339.

    Google Scholar 

  54. Priebe, C, Cowen, L., Mine Detection via generalized Wilcoxon-Mann-Whitney Classification, ibid., p. 906–917.

    Google Scholar 

  55. Rhebergen, J., Zwamborn, P., Design of an Ultra Wide band ground penetrating radar System Using Impulse radiating Antennas, in Ref lV, p. 45

    Google Scholar 

  56. Rhodes, E., Dickerman, C, Peters, C, (1993) Associated-Particle Sealed Tube Neutron Probe for Characterization of Materials, Pres, at Active Probe Technologies Conf. of Intern. Symp. On Substance Identification Technologies, Insbruck, Austria.

    Google Scholar 

  57. Rose-Pehrsson, R., Shaffer, R., McDonald, J., et al, UXO target Detection Using Magnetometry and EM Survey data, http://chem.nrl.naw.mil/MTAD/1998/SERFP98.pdf

  58. Simard, J.R., Mathieu, P., Larochelle, V., Bonnier, D., Air-borne Far-IR Imaging System: Description and Preliminary Results, in Ref. I, pp. 84–95

    Google Scholar 

  59. Trang, A., Czipott P., Waldron, D., (1997) Characterization of Small Metallic Objects and Non-Metallic Antipersonnel Mines, SPIEProc. v. 3097, pp. 372–383

    Google Scholar 

  60. Ulisses, Braga-Neto, On Detecting Mines and Mine like Objects in Highly Cluttered Multispectral Aerial Images by means of mathematical Morphology, in Ref I, 3392, p. 987–998.

    Google Scholar 

  61. Ulug, M., McCullough, C, (1998) Fusion of Thermal and Vision Images, in Book: Intelligent Engineering Systems Through Artificial Neural Networks, V. 8, ASME Press, New York.

    Google Scholar 

  62. Van Orden, G., Van Der Pyl, T., Sims, G., and Sieber, A., (1997) Development in Demining, in Book: The Elimination of Land Mines, n. SI 3/97, UN, Ed.: Kerstin Hoffman, Geneva.

    Google Scholar 

  63. Visualizing Metal Detectors for Humanitarian Demining LAMI, EPFL, 1997, http://lamiwww.epfl.ch/lami/detec/visualmd.html

    Google Scholar 

  64. Vouvropoulos, G., Womble, P., Paschal, J., Pelan: A Pulsed Neutron Portable Probe for UXO and Land Mine identification, in: Ref. I, paper # 49

    Google Scholar 

  65. Witten, T., Present State of the Art in GPR for Mine Detection, in: Ref. I p. 565–575

    Google Scholar 

  66. Yujiri, L, Hauss, B., Shoucri, M., Detection of Metal and Plastic Mines using Passive Millimeter Waves, SPIE96 Proc, v. 3067, 1996, pp. 330–336

    Article  Google Scholar 

  67. Yujiri L, Hauss, B., Shoucri M., Microwave/millimiter wave detection of metal and plastic mines, SPIE97 Proc, v. 3079, 1997, pp. 652–658

    Article  Google Scholar 

  68. Zakharia, M., F. Magand, J. Sageloli and J. Sessarego, Time-Frequency Approaches for Sonar Target Description: Application to Fisheries, In Acoustic Signal Processing in Ocean Exploration, NATO ASI series, Jose M.F. Moura and Isabel M.G. Lourtie Editors, 541–546, Kluwer Publishers, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bystritskii, V.M. (2002). Landmine Problem and Multisensor Detection. In: Hyder, A.K., Shahbazian, E., Waltz, E. (eds) Multisensor Fusion. NATO Science Series, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0556-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0556-2_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0723-1

  • Online ISBN: 978-94-010-0556-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics