Skip to main content

The Combinatorial Approach for Heterogeneous Catalysis: A Challenge for Academic Research

  • Chapter
Principles and Methods for Accelerated Catalyst Design and Testing

Part of the book series: NATO Science Series ((NAII,volume 69))

Abstract

Over the past five years, combinatorial chemistry applied to heterogeneous catalysis has been dealt with in more and more articles, reviews and patents (Fig. 1). This methodology remains very controversial, however. Today, within universities as well as within public and private research centres, attitudes toward combinatorial methods run the gamut from fascination to scepticism (or even outright rejection). The debate usually originates from a misunderstanding of the strategies at hand. As such, “combinatorial catalysis” is too often mistaken for a random, undisciplined mixing of various chemicals. On the contrary, the combinatorial approach embodies conventional catalysis, micro mechanics, robotics, analytical methodology and information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Combinatorial approaches and high throughput screening for new materials discovery, COMBI Europe, June 25-July 1, 2000, Frankfurt, Germany

    Google Scholar 

  2. Fast analytical screening of catalysts and fast catalyst testing, NICE/ERNST Workshop, Sept 11-12,2000, Espoo, Finland

    Google Scholar 

  3. Nato Advanced Study Institute, Principles and methods for accelarated catalyst design, preparation, testing and development, July 16-27, 2001, Vilamoura, Portugal

    Google Scholar 

  4. Combinatorial approaches for new materials discovery, COMBI 2001, January 28-30, 2001, San Diego, CA

    Google Scholar 

  5. Senkan S. (2001) Combinatorial heterogeneous catalysis-a new path in an old field, Angew. Chem., Int. Ed. 40, 312–329

    Article  CAS  Google Scholar 

  6. Harold M.P., Mills P.L. and Nicole J.F. (2001) In: Froment G.F. and Waugh K.C. (eds) (Studies in Surface Science and Catalysis), vol 133. Elsevier Science p 87–98

    Google Scholar 

  7. Perez-Ramirez J., Berger R.J., Mul G., Kapteijn F. and Moulijn J.A. (2000) The six-flow reactor technology A review on fast catalyst screening and kinetic studies, Catal. Today 60, 93–109

    Article  CAS  Google Scholar 

  8. Boudart M. (2000) From the century of the rate equation to the century of the rate constants: a revolution in catalytic kinetics and assisted catalyst design, Catal. Lett. 65, 1–3

    Article  CAS  Google Scholar 

  9. Gennari F., Seneci P. and Miertus S. (2000) Application of combinatorial technologies for catalyst design and development, Catal. Rev.—Sci. Eng. 42, 385–402

    Article  CAS  Google Scholar 

  10. Bein T.(1999) Efficient assays for combinatorial methods for the discovery of catalysts, Angew. Chem., Int. Ed. 38, 323–326

    Google Scholar 

  11. Crabtree R.H. (1999) Speeding catalyst discovery and optimization, Chemtech 29, 21–26

    CAS  Google Scholar 

  12. Jandeleit B., Schaefer D.J., Powers T.S., Turner H.W.and Weinberg W.H. (1999) Combinatorial materials science and catalysis, Angew. Chem., Int. Ed. 38, 2494–2532

    Article  CAS  Google Scholar 

  13. Maier W.F. (1999) Combinatorial chemistry—Challenge and chance for the development of new catalysts and materials Angew. Chem., Int. Ed 38, 1216–1218

    Article  CAS  Google Scholar 

  14. Jandeleit B., Turner H.W., Uno T., Van Beek J.A.M.and Weinberg W.H. (1998) Combinatorial methods in catalysis, Cattech 2, 101–123

    CAS  Google Scholar 

  15. Maxwell I.E. (1998) Combinatorial chemistry—Connecting with catalysis, Nature 394, 325–326

    Article  Google Scholar 

  16. Newsam J.M., Schuth F. and Spellane P.e. (1998) Combinatorial approaches as a component of high-throughput experimentation (HTE) in catalysis research. Special issue on materials science,: Biotechnology and bioengineering 61, 203–216

    Article  CAS  Google Scholar 

  17. Schlogl R. (1998) Combinatorial chemistry in heterogeneous catalysis: A new scientific approach or “the king’s new clothes”?, Angew. Chem., Int. Ed 37, 2333–2336

    Article  CAS  Google Scholar 

  18. Senkan S.M. (1998) High-throughput screening of solid-state catalyst libraries, Nature (London) 394, 350–353

    Article  CAS  Google Scholar 

  19. Engstrom J.R. and Weinberg H. (2000) Combinatorial materials science: paradigm shift in materials discovery and optimization, AiChE 46, 2–5

    Article  CAS  Google Scholar 

  20. Reddington E., Sapienza A., Gurau B., Viswanathan R., Sarangapani S., Smotkin E.S. and Mallouk T.E. (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts, Science 280, 1735–1737

    Article  CAS  Google Scholar 

  21. Mallouk T.E., Chan B.C., Chen G., Sun Y., Viswanathan R., Lei H.W., Gurau B., Smotkin E.S., Willis R.R. and Bare S.R. (2000) Combinatorial discovery of carbon monoxide tolerant catalysts, Abstr. Pap.—Am. Chem. Soc. 220th, IEC-060

    Google Scholar 

  22. Lettmann C., Hinrichs H. and Maier W.F. (2001) Combinatorial discovery of new photocatalysts for water purification with visible light, Angew. Chem., Int. Ed. 40, 3160–3164

    Article  CAS  Google Scholar 

  23. Krantz K., Ozturk S. and Senkan S. (2000) Application of combinatorial catalysis to the selective reduction of NO by C3H6, Catal. Today 62, 281–289

    Article  CAS  Google Scholar 

  24. Krantz K., Ozturk S. and Senkan S. (2001) Application of combinatorial catalysis to the selective reduction of NO by C3H6,: Angew. Chem., Int. Ed 40, 312–329

    Article  Google Scholar 

  25. Schultz P.G. and Xiang X.-D. (1998) Combinatorial approaches to materials science, Curr. Opin. Solid State Mater. Sci. 3, 153–158

    Article  CAS  Google Scholar 

  26. Xiang X.D. (1998) Combinatorial synthesis and high throughput evaluation of functional oxides—A integrated materials chip approach, Materials Science and Engineering B Solid State Materials for Advanced Technology 56, 246–250

    Article  Google Scholar 

  27. Cong P.J., Doolen R.D., Fan Q., Giaquinta D.M., Guan S.H., McFarland E.W., Poojary D.M., Self K., Turner H.W. and Weinberg W.H. (1999) High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries, Angew. Chem., Int. Ed 38, 484–488

    Article  CAS  Google Scholar 

  28. Orschel M., Klein J., Schmidt H.-W. and Maier W.F. (1999) Detection of reaction selectivity on catalyst libraries by spatially resolved mass spectrometry, Angew. Chem, Int. Ed. 38, 2791–2794

    Article  CAS  Google Scholar 

  29. Rodemerck U, Ignaszewski P, Lucas M., Claus P. and Baerns M. (2000) Parallel synthesis and fast screening of heterogeneous catalysts,: Catal. Today. 62, 281–289

    Article  Google Scholar 

  30. Claus P, Honicke D. and Zech T. (2001) Miniaturization of screening devices for the combinatorial development of heterogeneous catalysts, Catal. Today 67, 319–339

    Article  CAS  Google Scholar 

  31. DeLue NR. and McGuffey A.M. (2000) Applications of combinatorial chemistry to industrial catalysis,: Topics In Catalysis 13, 249–252

    Article  Google Scholar 

  32. Ehrfeld W, Hartmann H.J, Hessel V, Kiesewalter S. and Lowe H. (2000) Microreaction technology for process intensification and high throughput screening, Micro Total Anal. Syst. 2000, Proc..mu.TAS Symp, 4th, 33–40

    Google Scholar 

  33. Van Diepen A.E, Maschmeyer T., Kapteijn F. and Moulijn J.A. (2000) Catalytic reactor engineering—novel concepts in production and in catalyst testing, NATO Sci. Ser, Ser. C 560,283–300

    Google Scholar 

  34. Heck R.M, Gulati S. and Farrauto R.J. (2001) The application of monoliths for gas phase catalytic reactions, Chemical Engineering Journal 82, 149–156

    Article  CAS  Google Scholar 

  35. Mueller A, Hessel V, Loeve H, Hanson M, du Fresne von Hohenesche C. and Hoffmann C. (2001) Microreaction Technology: Parallel Preparation and Testing of Catalysts. DECHEMA e. V., June 21, Franckfurt, Germany p L6

    Google Scholar 

  36. Cong P., Dehestani A., Doolen R., Giaquinta D.M., Guan S., Markov V., Poojary D., Self K., Turner H. and Weinberg W.H.(1999) Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system, Proc. Natl. Acad. Sci. U. S. A. 96, 11077–11080

    Article  CAS  Google Scholar 

  37. Liu Y.M., Cong P.J., Doolen R.D., Turner H.W.and Weinberg W.H. (2000) High-throughput synthesis and screening of V-Al-Nb and Cr-Al-Nb oxide libraries for ethane oxidative dehydrogenation to ethylene, Catal. Today 61, 87–92

    Article  CAS  Google Scholar 

  38. Senkan S., Krantz K., Ozturk S., Zengin V. and Onal I. (1999) High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry, Angew. Chem., Int. Ed. 38, 2794–2799

    Article  CAS  Google Scholar 

  39. Snively C.M. and Lauterbach J. (2000) FTIR imaging for chemically sensitive, high throughput analysis of combinatorial libraries, NATO Sci. Ser., Ser. C 560, 437–439

    CAS  Google Scholar 

  40. Snively C.M., Oskarsdottir G. and Lauterbach J. (2001) Chemically sensitive parallel analysis of combinatorial catalyst libraries, Catal. Today 67, 357–368

    Article  CAS  Google Scholar 

  41. Rodemerck U., Ignaszewski P., Lucas M. and Claus P. (2000) Parallel synthesis and fast catalytic testing of catalyst libraries for oxidation reactions, Chem. Eng. Technol. 23, 413–416

    Article  CAS  Google Scholar 

  42. Rodermerck U., Buyevskaya O., Ignaszewski P., Langpape M., Kolf S., Claus P. and Baerns M. (2001) Microreaction Technology: Parallel Preparation and Testing of Catalysts. DECHEMA e. V., June 21, Franckfurt, Germany p L4

    Google Scholar 

  43. Hoffinann C., Schmidt H.W. and Schuth F. (2001) A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction, Journal of Catalysis 198, 348–354

    Article  Google Scholar 

  44. Hoffmann C., Thomson S., Busch O., Wolf A., Kiener C., Schmidt W. and Schueth F. (2001) Microreaction Technology: Parallel Preparation and Testing of Catalysts. DECHEMA e. V., June 21, Franckfurt, Germany p L5

    Google Scholar 

  45. Hoffinann C., Wolf A. and Schuth F. (1999) Parallel synthesis and testing of catalysts under nearly conventional testing conditions, Angew. Chem., Int. Ed. 38, 2800–2803

    Article  Google Scholar 

  46. Schuth F., Hoffmann C., Wolf A., Schunk S., Stichert W.and Brenner A. (1999) High-throughput experimentation in catalysis, Comb. Chem., 463–477

    Google Scholar 

  47. Rodemerck U., Wolf D., Buyevskaya O.V., Claus P., Senkan S. and Baerns M. (2001) High-throughput synthesis and screening of catalytic materials—Case study on the search for a low-temperature catalyst for the oxidation of low-concentration propane, Chemical Engineering Journal 82 (1-3) Special Iss. SI, 3–11

    Article  CAS  Google Scholar 

  48. van Lieshout M., van Deursen M., Derks R., Janssen H.G.and Cramers C (1999) A practical comparison of two recent strategies for fast gas chromatography: Packed capillary columns and multicapillary columns, Journal of Microcolumn Separations 11,155–162

    Article  Google Scholar 

  49. Schuurman Y., Decamp T., Jalibert J.C.and Mirodatos C (1999) In: Froment G.F. and Waugh K.C. (eds) Reaction Kinetics and the Development of Catalytic Processes (Studies in Surface Science and Catalysis), vol 122. Elsevier, Amsterdam p 133–140

    Chapter  Google Scholar 

  50. Mirodatos C. (1991) Use of isotopic transient kinetics in heterogeneous catalysis, Catal. Today 9, 83–95

    Article  CAS  Google Scholar 

  51. Shannon S.L. and Goodwin J.G., Jr. (1995) Characterization of Catalytic Surfaces by Isotopic-Transient Kinetics during Steady-State Reaction, Chem. Rev. (Washington, D. C.) 95, 677–695

    Article  CAS  Google Scholar 

  52. Kondratenko E.V., Buyevskaya O.V., Soick M. and Baerns M. (1999) Transient kinetics and mechanism of oxygen adsorption over oxide catalysts from the TAP-reactor system, Catal. Letters 63, 153–159

    Article  CAS  Google Scholar 

  53. Cohan P. (2001) Results and commercialization—Progress in the practice of combinatorial materials science, Abstr. Pap.—Am. Chem. Soc. 221st, BTEC-056

    Google Scholar 

  54. Dorsett D.R., Jr. (2001) Capturing the combinatorial workflow, Abstr. Pap.—Am. Chem. Soc. 221st, BTEC-064

    Google Scholar 

  55. Harmon L.A., Vayda A.J. and Schlosser S.G. (2001) Informatics challenges in combinatorial materials discovery, Abstr. Pap.—Am. Chem. Soc. 221st, BTEC-067

    Google Scholar 

  56. Wolf D., Buyevskaya O.V. and Baerns M. (2000) An evolutionary approach in the combinatorial selection and optimization of catalytic materials, Appl. Catal., A 200, 63–77

    Article  CAS  Google Scholar 

  57. Buyevskaya O.V., Wolf D. and Baerns M. (2000) Ethylene and propene by oxidative dehydrogenation of ethane and propane—’Performance of rare-earth oxide-based catalysts and development of redox-type catalytic materials by combinatorial methods’, Catal. Today 62, 91–99

    Article  CAS  Google Scholar 

  58. Reetz M.T. and Jaeger K.E. (2000) Enantioselective enzymes for organic synthesis created by directed evolution, Chemistry a European Journal 6, 407–412

    Article  CAS  Google Scholar 

  59. Reetz M.T. (2001) Combinatorial and evolution-based methods in the creation of enantioselective catalysts, Angew. Chem., Int. Ed. 40, 284–310

    Article  CAS  Google Scholar 

  60. Janicke, M.T., Kestenbaum, H., Hagendorf, U., Schüth, F., Fichtner, M, Schubert, K. (2000) The controlled oxidation of hydrogen from explosive mixture of gases using microstructured reactor/heat exchnager and Pt/A12O3 catalyst, J. of Catalysis, 191,282–293.

    Article  CAS  Google Scholar 

  61. Zech, T., Hönicke, D., (2001) High throughput catalyst screening in microchemical systems, in proc. EUROPACAT V, September 2-7, Limerick, Ireland, p. 12-O-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farrusseng, D., Baumes, L., Vauthey, I., Hayaud, C., Denton, P., Mirodatos, C. (2002). The Combinatorial Approach for Heterogeneous Catalysis: A Challenge for Academic Research. In: Derouane, E.G., Parmon, V., Lemos, F., Ribeiro, F.R. (eds) Principles and Methods for Accelerated Catalyst Design and Testing. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0554-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0554-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0721-7

  • Online ISBN: 978-94-010-0554-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics