Skip to main content

Problems and Challenges About Accelerated Testing of the Catalytic Activity of Catalysts

  • Chapter
Book cover Principles and Methods for Accelerated Catalyst Design and Testing

Part of the book series: NATO Science Series ((NAII,volume 69))

Abstract

Catalysis, as one of the most frequently observed natural phenomena, is the basic form of chemical reactions proceeding at a high rate in nature as well as in different fields of practical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrov L., (1998) Present State and Prospects for Development of Industrial Catalysis, Bulg. Chem. Ind. 69, 65–72.

    Google Scholar 

  2. Weisz P.B. and Prater C.D., (1954) Interpretation of measurements in Experimental Catalysis, Advances in Catalysis 6, 143–196.

    Article  CAS  Google Scholar 

  3. Berty J.M., (1979) Testing Commercial Catalysts in Recycle Reactors, Catal. Rev.-Sci. Eng., 20 75–96.

    Article  CAS  Google Scholar 

  4. Timoshenko V.I., Shtral I.Ya, Luzhkov Yu.M. and Slinko M.G. (1979) Automated System for Research in the Field of Catalysis, Khimicheskaia Promishlenost 2, 172–177 (In Russian).

    Google Scholar 

  5. Christoffel E.G. (1982) Laboratory Reactors and Heterogeneous Catalytic Processes, Catal. Rev.-Sci. Eng. 24, 159–232.

    Article  CAS  Google Scholar 

  6. Berty J.M. (1983) Laboratory Reactors for Catalytic Research, in Applied Industrial Catalysis, B.E. Leach Editor, vol. 1, Academic Press, New York.

    Google Scholar 

  7. Anderson J.R. and Pratt P.C. (1985) Introduction to Characterisation and Testing of Catalysts, Academic Press, New York.

    Google Scholar 

  8. Portela F., Dias C.R. and Oliveira M. (1998) Measuring the Activity of metal oxide catalysts: Standartization Procedure, Bulg. Chem. Commun. 30,256–268.

    CAS  Google Scholar 

  9. Bond G.S. (1987) Heterogeneous Catalysis and Applications, 2nd Edition, Oxford University Press, Oxford.

    Google Scholar 

  10. Satterfield C.N., (1991) Heterogeneous Catalysis in Practice, 2nd Edition, McGraw-Hill, New York.

    Google Scholar 

  11. Gates B.C. (1992) Catalytic Chemistry, Willey, New York.

    Google Scholar 

  12. Somorjai G.A. (1994) Principles of Surface Chemistry and Catalysis, Willey, New York.

    Google Scholar 

  13. Thomas J.M. and Thomas W.J. (1996) Principles and Practice of Heterogeneous Catalysis, VCH, Weinheim.

    Google Scholar 

  14. Temkin M.I. (1963) Kinetics of Steady State Catalytic Reactions, Dokl. Akad. Nauk USSR, 152–156.

    Google Scholar 

  15. Temkin M.I. (1979) The Kinetics of Some Industrial Heterogeneous Catalytic Reactions, in Advances in Catalysis, Academic Press 28, 173.

    CAS  Google Scholar 

  16. Kiperman S.L. (1979) Fundamental of Chemical Kinetics in Heterogeneous Catalysis, Chemistry Publishing House, Moscow, (In Russian).

    Google Scholar 

  17. Froment G.F. and Bischoff K.B., (1990), Chemical Reactor Analysis and Design, Willey, New York.

    Google Scholar 

  18. Petrov L.A. (1992) Application of graph theory to study of the kinetics of heterogeneous catalytic reactions, in D. Bonchev and D. Rouvray (eds), Chemical Graph Theory: Reactivity and Kinetics, Gordon and Breach Science Publishers Ltd.,2–52.

    Google Scholar 

  19. Petrov L., Eliyas A. and Shopov D. (1985) A kinetic model of steady state ethylene epoxidation over silver catalyst, Applied Catalysis, 18, 87–103.

    Article  CAS  Google Scholar 

  20. Kiperman S.L. (1972) Private communication.

    Google Scholar 

  21. Wheeler A. (1950) Reaction Rates and Selectivity in Catalyst Pores, Advances in Catalysis, 3, 250–327.

    Google Scholar 

  22. Aris R. (1970) The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. I. The Theory of Steady State, Clarendon Press, Oxford.

    Google Scholar 

  23. Satterfield C.N. (1970) Mass Transfer in Heterogeneous Catalysis, M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  24. Frank-Kamenetzkii D.A (1987) Diffusion and Heat Transfer in Chemical kinetics, Nauka, Moscow (Third edition in Russian).

    Google Scholar 

  25. Carberry J.J. (1987) Physico-chemical aspects of heat and mass transfer in heterogeneous catalysis, in J. R. Anderson and M. Boudart (eds), Catalysis, Springer Verlag, Berlin 8,131–171.

    Chapter  Google Scholar 

  26. Park I-S., Do D.D. and Rodrigues A.E. (1996) Measurement of the Effective Diffusivity in Porous Media by the Diffusion Cell Method, Catal. Rev.-Sci. Eng. 38, 189–247.

    Article  CAS  Google Scholar 

  27. Petrov L. and Maximov Ch. (1998) Determination of the diffusion characteristics of industrial copper catalysts at different stages of activation, Bulg. Chem. Ind. 69, 45–54.

    CAS  Google Scholar 

  28. Petrov L., Kumbilieva K. and Kirkov N. (1990) Kinetic Model of Nitrobenzene Hydrogenation to Aniline over Industrial Copper Catalyst Considering the Mass Transfer and Deactivation, Appl. Catal. 59, 31–43.

    Article  CAS  Google Scholar 

  29. Genari F., Seneci P. and Miertus S. (2000) Application of Combinatorial Technologies for Catalyst Design and Development, Catal. Rev-Sci. Eng. 42, 385–402.

    Article  Google Scholar 

  30. Creer J.G., Jackson P., Pandy G., Percival G.G. and Seddon D. (1986) The Design and Construction of a Multichannel Microreactor for Catalyst Evaluation, Applied Catalysis 22, 85–95.

    Article  CAS  Google Scholar 

  31. Hoffmann C, Schmidt H-W. and Schuth F. (2001) A Multipurpose Parallelized 49-Chanel Reactor for the Screening of Catalysts: Methane Oxidation as the Example Reaction, J. Catal. 198, 348–354.

    Article  CAS  Google Scholar 

  32. Zeton Altamira (2001) An 8-Chanel Fixed Bed Reactor for High Throughput Screening of Heterogeneous Catalysts.

    Google Scholar 

  33. Bradley D., (1999) Chemical Reduction, The European Chemist 1, 17–18.

    Google Scholar 

  34. Rupprecht&Patashnick Co., Inc. (1999) Pulse Mass Analyser: A Real Time Microbalance in a Packed Bed Microreactor.

    Google Scholar 

  35. Petrov L., Vladov Ch., Neshev N., Bonev Ch., Prahov L., Kirkov N., Vasileva M., Filkova D. and Dancheva S. (1986) Method for forecasting of life time of industrial catalysts for hydrogenation, Bulgarian Patent 41960.

    Google Scholar 

  36. Petrov L., Vladov Ch., Bonev Ch., Prahov L., Kirkov N., Eliyas A., Neshev N., Filkova D. and Dancheva S. (1995) Prognosis of the life time of industrial hydrogenation and oxidation catalysts, EuropaCat-2, Book of Abstracts, Maastricht, The Netherlands, 646.

    Google Scholar 

  37. Petrov L., Eliyas A. and Maximov Ch. (1991) Difficulties in the application of sequential experimental design for kinetic model discrimination and parameter estimation, Ind. Eng. Chem. Res. 30, 639.

    Article  CAS  Google Scholar 

  38. Petrov L. and Kumbilieva K. (1992) Characteristics of the Mechanism of the Processes Accompanied by a Change in the Activity of Catalysts, Kinet.Katal. 33, 503–515.

    CAS  Google Scholar 

  39. Kumbilieva K., Petrov L. and Kiperman S.L. (1994) Joint Effects of Diffusion Resistance and Catalyst Deactivation on the Selectivity of Complex Reactions Proceeding via Different Mechanisms, Appl.Catal. A: Gen. 118, 199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petrov, L. (2002). Problems and Challenges About Accelerated Testing of the Catalytic Activity of Catalysts. In: Derouane, E.G., Parmon, V., Lemos, F., Ribeiro, F.R. (eds) Principles and Methods for Accelerated Catalyst Design and Testing. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0554-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0554-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0721-7

  • Online ISBN: 978-94-010-0554-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics