Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 69))

Abstract

Acid catalysis plays a major role in industrial applications of catalytic processes. In particular, the use of microporous solid acid catalysts has an enormous impact in the petroleum refining industry, where large-scale processes, such as the catalytic cracking of heavy oil fractions, are carried out over very active zeolite catalysts. In this paper we will try to give an overview of the way one can characterise the acidity of a solid catalyst and used this information to predict the activity of the catalyst for a given acid catalysed reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laidler, K.J.(1987) Chemical Kinetics, 3rd Ed., Harper Collins, New York.

    Google Scholar 

  2. Ostwald, W. (1884) J. Prakt. Chem. 30, 39.

    Google Scholar 

  3. Arrhenius, S. (1888) Z. Phys. Chem. 2, 495.

    Google Scholar 

  4. Arrhenius, S. (1889) Z. Phys. Chem. 4, 244.

    Google Scholar 

  5. Arrhenius, S. (1899) Z. Phys. Chem. 28,317.

    Google Scholar 

  6. Dawson, H.M. and Powis, F. (1913) J. Chem. Soc., 2135.

    Google Scholar 

  7. Brönsted, J.N. (1923) Rec. Trav. Chim. 42, 718.

    Article  Google Scholar 

  8. Brönsted, J.N. and Pedersen, K.J. (1923) Z. Phys. Chem. 108,185.

    Google Scholar 

  9. Brönsted, J.N. (1928) Chem. Rev. 5, 322.

    Article  Google Scholar 

  10. Steinfeld, J.I., Francisco, J.S. and Hase, W.H. (1999) Chemical Kinetics and Dynamics, 2nd Ed, p. 136 and following., Prentice-Hall, London.

    Google Scholar 

  11. Thomas, J.M. and Thomas W.J. (1997) Principles and Practice of Heterogeneous Catalysis, p.616 and following, VCH, Weinheim.

    Google Scholar 

  12. Decroocq, D., Bulle, R., Chatila, S. Franck, J.P. and Jacquin, Y. (1978) Le Craquage Catalytique des Coupes Lourdes, Technip, Paris.

    Google Scholar 

  13. Masel, R.I. (2001) Chemical Kinetics and Catalysis, Wiley, New York.

    Google Scholar 

  14. Cardona-Martinez N. and Dumesic J.A. (1990) J. Catal., 125,427.

    Article  CAS  Google Scholar 

  15. Auroux, A., Jin, Y.S. and Vedrine, J.C. (1988) App. Catal., 36, 323.

    Article  CAS  Google Scholar 

  16. Hunger, A. and Szombathely, M.V. (1995) Z. Phys. Chem., 190,19.

    Article  CAS  Google Scholar 

  17. Karge, H.G., Dondur, V. and Weitkamp, J. (1991) J. Phys. Chem., 95,283.

    Article  CAS  Google Scholar 

  18. Ison, A. and Gorte, R.J. (1984) J. Catal., 89,150.

    Article  CAS  Google Scholar 

  19. Costa, C., Lopes, J.M., Lemos, F., and Ramôa Ribeiro, F. (1999) Activity-Acidity Relationship in Zeolite Y. Part 2. Determination of the Acid Strength Distribution by Temperature Programmed Desorption of Ammonia, J. Molec. Catal. A Chem. 144,221.

    Article  CAS  Google Scholar 

  20. Wang, X., Lemos, M.A.N.D.A., Lemos, F.and Ramoa Ribeiro, F. (2001) Activity-Acidity Relationships in Solid Acid Catalysis—a Quantum Chemical Study, Stud. Surf. Sci. Catal.133,501–506.

    Article  CAS  Google Scholar 

  21. Cvetanovic, R.J. and Amenomiya, Y. (1967) Adv. Catal., 17, 103.

    Article  CAS  Google Scholar 

  22. Cvetanovic, R.J. and Amenomiya, Y. (1972) Catal. Rev., 10, 21.

    Article  Google Scholar 

  23. Sawa, M., Niwa M. and Murakami Y. (1990) Zeolite, 10,307.

    Article  CAS  Google Scholar 

  24. Richards, R.E. and Rees, L.V.C. (1986) Zeolites, 6, 17.

    Article  CAS  Google Scholar 

  25. Dima, E. and Rees, L.V.C. (1987) Zeolites, 7, 219.

    Article  CAS  Google Scholar 

  26. Hashimoto, K., Masuda, T., and Mori, T. (1986) in Y. Murakmi, A. Lijima and J.W. Word (eds.), Stud. Surf. Sci. Catal.: New Developments in Zeolite Science and Technology, Elsevier, 28,503.

    Google Scholar 

  27. Forni, L. and Magni, E. (1988) J. Catal. 112,437–443

    Article  CAS  Google Scholar 

  28. Forni, L., Magni, E., Ortoleva, E., Monaci, R. and Solinas, V. (1988) J. Catal., 112, 444.

    Article  CAS  Google Scholar 

  29. Karge, H.G. and Dondur, V. (1990) J. Phys. Chem., 94, 765.

    Article  CAS  Google Scholar 

  30. Hunger, B., Szombathely, M.V., Hoffmann, J. and Brauner, P. (1995) J. Therm. Anal., 44,293.

    Article  CAS  Google Scholar 

  31. Auroux, A. and Vedrine, J.C. (1985) Stud. Surf. Sci. Catal., 20, 311.

    Article  CAS  Google Scholar 

  32. Costa, C., Dzikh, LP., Lopes, J.M. Lemos F. and Ramôa Ribeiro, F. (2000) Activity-Acidity Relationship in Zeolite ZSM-5. Application of Brönsted Type Equations J. Mol Catal. A: Chem., 154,193–201.

    Article  CAS  Google Scholar 

  33. Shannon, R.D., Gardner, K.G. and Staley, R.H. (1985) J. Phys. Chem., 89, 4778.

    Article  CAS  Google Scholar 

  34. Chen, D.T., Sharma, S.B., Filimonov, I. and Dumesic, J.A. (1992) Catal Lett., 12, 201.

    Article  CAS  Google Scholar 

  35. Garrone, E., Fubini, B., Bonelli, B. Onida, B. and Otero Areán, C. (1999) Phys. Chem. Chem. Phys., 1, 513.

    Article  CAS  Google Scholar 

  36. Egerton T.A. and Stone, F.S. (1970) Trans. Faraday Soc., 66, 2364.

    Article  CAS  Google Scholar 

  37. Li-Feng, C. and Rees, L.V.C. (1988) Zeolites 8, 310.

    Article  CAS  Google Scholar 

  38. Rigby, A.M., Kramer, G.J., and. van Santen, R.A (1997) J. Catal 1, 170.

    Google Scholar 

  39. Wang, X., Lemos, M.A.N.D.A., Lemos, F, Costa, C. and Ramôa Ribeiro, F. (2001) Activity-Acidity Relationship in Y Zeolite: an Experimental and Quantum-Chemical Study, Stud. Surf. Sci. Catal., 135,259

    Article  Google Scholar 

  40. Dumesic, J.A., Rudd, D.F., Aparicio, L.M., Rekoske, J.E. and Treviño, A.A. (1993) The Microkinetics of Heterogeneous Catalysis, ch. 11, American Chemical Society, Washington DC.

    Google Scholar 

  41. Marcus, R.A. (1955) J. Chem. Phys., 20, 359.

    Article  Google Scholar 

  42. Marcus, R.A. (1968) J. Chem. Phys., 72, 891.

    Article  CAS  Google Scholar 

  43. Gates, B.C. (1992) Catalytic Chemistry, John Wiley, New York.

    Google Scholar 

  44. Taylor, H.S. (1925) Proc. R. Soc. (London) A 108,105.

    Article  CAS  Google Scholar 

  45. Constable, F.H. (1925) Proc. R. Soc. (London) A 108,355.

    Article  CAS  Google Scholar 

  46. Halsey, G.D. (1949) J. Chem. Phys. 17, 758.

    Article  CAS  Google Scholar 

  47. .Lemos, F., Ribeiro, M.F., Lopes, J.M. and Ramôa Ribeiro, (1989) A New Method for the Prediction of Zeolite Cracking Activity Based on Data from Temperature Programmed Desorption of Ammonia, Proceedings of Chempor 89, Lisbon, Portugal.

    Google Scholar 

  48. Costa, C., Lopes, J.M., Lemos, F. and Ramôa Ribeiro, F. (1997) Acidity-Activity Relationship in Zeolite Y. A Preliminary Study for n-Heptane Transformation, Catal Lett., 44, 255–251.

    Article  CAS  Google Scholar 

  49. Costa, C., Lopes, J.M., Lemos, F. and Ramôa Ribeiro, F. (1999) Activity-Acidity Relationship in Zeolite Y. Part 3. Application of Brönsted Type Equations, J. Mol Catal. A.Chemical, 144 233–238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemos, F. et al. (2002). Analysis and Modelling of Multi-Site Acid Catalysts. In: Derouane, E.G., Parmon, V., Lemos, F., Ribeiro, F.R. (eds) Principles and Methods for Accelerated Catalyst Design and Testing. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0554-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0554-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0721-7

  • Online ISBN: 978-94-010-0554-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics