Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 68))

Abstract

Since the first molecular dynamics simulations of hard spheres by Alder and Wainwright in the fifties of the last century (Alder, B.J. and Wainwright, T.E. (1957) Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208-1209), this method has evolved to a powerful and intensively used technique in the computer simulations of physical, chemical and biological systems. The present article is meant as a brief and easy starting point for the very beginner in this field. It gives an introduction to the basic principles of the method and sketches also some of the more elaborate extensions and recent methodological developments such as first-principles molecular dynamics simulations (Car-Parrinello simulations) and mixed quantum mechanical/molecular mechanical (QM/MM) approaches. A final outlook attempts to summarize the state-of-the-art of what is possible today including the main limitations that presently exist and some of the current strategies of how to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciccotti, G. and Hoover, W.G. (eds.) (1986) Molecular Dynamics Simulations of Statistical Mechanical Systems, Proceedings International School of Physics “Enrico Fermi”, Vol. 97, North-Holland, Amsterdam.

    Google Scholar 

  2. Hoover, W.G. (1986) Molecular Dynamics, Lecture Notes in Physics, Vol. 258, Springer, Berlin.

    Google Scholar 

  3. Ciccotti, G., Frenkel, D., and McDonald, LR. (1987) Simulations of Liquids and Solids: Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics, North-Holland, Amsterdam.

    Google Scholar 

  4. McCammon, J. A. and Harvey, S.C. (1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  5. Allen, M.P. and Tildesley, DJ. (eds.) (1993) Computer Simulations in Chemical Physics, NATO ASI Series, Ser. C, Vol. 397, Kluwer, Dordrecht.

    Google Scholar 

  6. van Gunsteren, W.F., Wiener, P.K., and Wilkinson, AJ. (1993) Computer Simulation of Biomolecular Systems, Theoretical and Experimental Applications, Vol. 2, ESCOM, Leiden.

    Google Scholar 

  7. Frenkel, D. and Smit, B. (1996) Understanding Molecular Simulations, from Algorithms to Applications, Academic Press, San Diego.

    Google Scholar 

  8. Leach, A.R. (2001) Molecular Modelling, Principles and Applications, Prentice Hall, Harlow.

    Google Scholar 

  9. Allen, M.P. and Tildesley, D.J. (2001) Computer Simulations of Liquids, Clarendon Press, Oxford.

    Google Scholar 

  10. van Gunsteren, W.F. and Berendsen, H.J.C. (1990) Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry, Angew. Chem., Int. Ed. Engl. 29, 992–1023.

    Article  Google Scholar 

  11. Sagui, C. and Darden, T.A. (1999) Molecular Dynamics Simulations of Biomolecules: Long-Range Electrostatic Effects, Ann. Rev. Biophys. Biomol. Struct. 28, 155–179.

    Article  CAS  Google Scholar 

  12. Cheatham, T.E. and Kollman, P.A. (2000) Molecular Dynamics Simulation of Nucleic Acids, Ann. Rev. Phys. Chem. 51, 435–471.

    Article  CAS  Google Scholar 

  13. Tuckerman, M.E. and Martyna, G.J. (2000) Understanding Modern Molecular Dynamics: Techniques and Applications, J. Phys. Chem. B 104, 159–178.

    Article  CAS  Google Scholar 

  14. Remler, D.K. and Madden, P.A. (1990) Molecular Dynamics without Effective Potentials via the Car-Parrinello Approach, Mol. Phys. 70, 921–966.

    Article  CAS  Google Scholar 

  15. Galli, G. and Parrinello, M. (1991) Ab Initio Molecular Dynamics: Principles and Practical Implementation, in Meyer, M. and Pontikis, V. (eds.), Computer Simulation in Materials Science; Interatomic Potentials, Simulation Techniques and Applications, NATO ASI Series, Ser. E, Vol. 205, Kluwer, Dordrecht, pp. 283–304.

    Google Scholar 

  16. Pastore, G., Smargiassi, E., and Buda, F. (1991) Theory of ab Initio Molecular-Dynamics Calculations, Phys. Rev. A 44, 6334–6347.

    Article  CAS  Google Scholar 

  17. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopulos, J.D. (1992) Iterative Minimization Techniques for ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients, Rev. Mod. Phys. 64, 1045–1097.

    Article  CAS  Google Scholar 

  18. Galli, G. and Pasquarello, A. (1993) First-Principles Molecular Dynamics, in Allen, M.P. and Tildesley, DJ. (eds), Computer Simulations in Chemical Physics, NATO ASI Series, Ser. C, Vol. 397, Kluwer, Dordrecht, pp. 261–313.

    Chapter  Google Scholar 

  19. Tuckerman, M.E., Ungar, P.J., von Rosenvinge, T., and Klein, M.L.. (1996) Ab Initio Molecular Dynamics Simulations, J. Phys. Chem. 100, 12878–12887.

    Article  CAS  Google Scholar 

  20. Parrinello, M. (1997) From Silicon to RNA: The Coining of Age of ab Initio Molecular Dynamics, Solid State Commun. 102, 107–120.

    Article  Google Scholar 

  21. Marx, D. and Hutter, J. (2000) Ab Initio Molecular Dynamics: Theory and Implementation, in Grotendorst, J. (ed.), Modern Methods and Algorithms of Quantum Chemistry, NIC Series 1, Forschungszentrum Jülich, pp. 301–449.

    Google Scholar 

  22. Marx, D. (1999) ”Ab Initio Liquids”: Simulating Liquids Based on First Principles, in Caccamo, C, Hansen, J.-P., and Stell, G. (eds.), New Approaches to Problems in Liquid State Theory: Inhomogeneities and Phase Separation in Simple, Complex and Quantum Fluids, NATO Science Series, Ser. C, Vol. 529, Kluwer, Dordrecht, pp. 439–457.

    Google Scholar 

  23. Carloni, P. and Rothlisberger, U. (2001) Simulations of Enzymatic Systems: Perspectives from Car-Parrinello Molecular Dynamics Simulations, in Eriksson, L. (ed.), Theoretical Biochemistry—Processes and Properties of Biological Systems, Elsevier, Amsterdam, pp. 215–251.

    Chapter  Google Scholar 

  24. Trout, B.L. (2001) Car-Parrinello Methods in Chemical Engineering: Their Scope and Potential, Adv. Chem. Eng., in press.

    Google Scholar 

  25. Rothlisberger, U. (2001) 15 Years of Car-Parrinello Simulations in Physics, Chemistry and Biology, in Leszczynski, J. (ed.), Computational Chemistry: Reviews of Current Trends, Vol. 6, World Scientific, Singapore, pp. 33–68.

    Chapter  Google Scholar 

  26. Gao, J. and Thompson, M.A. (eds.) (1998) Combined Quantum Mechanical and Molecular Mechanical Methods, ACS Symp. Series, Vol. 712, American Chemical Society, Washington.

    Google Scholar 

  27. Sherwood, P. (2000) Hybrid Quantum Mechanics / Molecular Mechanics Approaches, in Grotendorst, J. (ed.), Modern Methods and Algorithms of Quantum Chemistry, NIC Series 1, Forschungszentrum Jülich, pp. 257–277.

    Google Scholar 

  28. Woo, T.K., Margl, P.M., Deng, L., Cavallo, L., and Ziegler, T. (1999) Towards more Realistic Computational Modeling of Homogenous Catalysis by Density Functional Theory: Combined QM/MM and ab Initio Molecular Dynamics, Catal Today 50, 479–500.

    Article  CAS  Google Scholar 

  29. Hillier, I.H. (1999) Chemical Reactivity Studied by Hybrid QM/MM Methods, J. Mol. Struct. (Theochem) 463, 45–52.

    Article  CAS  Google Scholar 

  30. Born, M. and Oppenheimer, J.R. (1927) Zur Quantentheorie der Molekeln, Ann. Phys. 84, 457–484.

    Article  CAS  Google Scholar 

  31. A number of approaches have been developed for molecular dynamics with nonadiabatic transitions, see e.g.: (a) Coker, D.F. and Xiao, L. (1995) Methods for Molecular Dynamics with Nonadiabatic Transitions, J. Chem. Phys. 102, 496–510. (b) Nielsen, S., Kapral, R., and Ciccotti, G. (2000) Mixed Quantum-Classical Surface Hopping Dynamics, J. Chem. Phys. 112, 6543-6553. (c) Nielsen, S., Kapral, R., and Ciccotti, G. (2000) Non-Adiabatic Dynamics in Mixed Quantum-Classical Systems, J. Stat. Phys. 101, 225-242. (d) Wong, K.F. and Rossky, P.J. (2001) Mean-Field Molecular Dynamics with Surface Hopping: Application to the Aqueous Solvated Electron, J. Phys. Chem. A 105, 2546-2556. (e) Deumens, E. and Öhrn, Y. (2001) Complete Electron Nuclear Dynamics, J. Phys. Chem. A 105, 2660-2667. (f) Hack, M.D. and Truhlar, D.G. (2001) Electronically Non-Adiabatic Trajectories: Continuous Surface Switching. II, J. Chem. Phys. 114, 2894-2902.

    Google Scholar 

  32. A review of current techniques is given e.g. in Makri, N. (1999) Time-Dependent Quantum Methods for Large Systems, Ann. Rev. Phys. Chem. 50, 167–191.

    Article  CAS  Google Scholar 

  33. Verlet, L. (1967) Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev. 159, 98–103.

    Article  CAS  Google Scholar 

  34. Swope, W.C., Andersen, H.C., Berens, P.H., and Wilson, K.R. (1982) A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters, J. Chem. Phys. 76, 637–649.

    Article  CAS  Google Scholar 

  35. Hockney, R.W. (1970) The Potential Calculation and Some Applications, Meth. Comput. Phys. 9, 135–211.

    Google Scholar 

  36. Gear, C.W. (1966) The Numerical Integration of Ordinary Differential Equations of Various Orders, Report ANL 7126, Argonne National Laboratory, USA.

    Google Scholar 

  37. Chandler, D. (1987) Introduction to Modern Statistical Mechanics, Oxford University Press, New York.

    Google Scholar 

  38. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, LR., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  39. MacKerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C, Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher III, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem. B 102, 3586–3616.

    Article  CAS  Google Scholar 

  40. van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hünenberger, P.H., Krüger, P.K.H.C, Mark, A.E., Scott, W.R.P., and Tironi, I. (1996) Biomolecular Simulations: The GROMOS96 Manual and User Guide, VDF Hochschulverlag AG, Zürich.

    Google Scholar 

  41. Kaminski, G. and Jorgensen, W.L. (1996) Performance of the AMBER94, MMFF94, and OPLS-AA Force Fields for Modeling Organic Liquids, J. Phys. Chem. 100, 18010–18013.

    Article  CAS  Google Scholar 

  42. Berendsen, H.J.C., Potsma, J.P.M., van Gunsteren, W.F., and Hermans, J. (1981) Interaction Models for Water in Relation to Protein Hydration, in Pullman, B. (ed.), Intermodular Forces, Jerusalem Symp. Quantum Chem. Biochem., Vol. 14, Reidel, Dordrecht, pp. 331–342.

    Google Scholar 

  43. Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P. (1987) The Missing Term in Effective Pair Potentials, J. Phys. Chem. 91, 6269–6271.

    Article  CAS  Google Scholar 

  44. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L.. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys. 79, 926–935. (b) Jorgensen, W.L. and Madura, J.D. (1985) Temperature and Size Dependence for Monte Carlo Simulations of TIP4P Water, Mol. Phys. 56, 1381-1392. (c) Mahoney, M.W. and Jorgensen, W.L. (2000) A Five-Site Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Non-Polarizable Potential Functions, J. Chem. Phys. 112, 8910-8922.

    Article  CAS  Google Scholar 

  45. Axilrod, B.M. and Teller, E. (1943) Interaction of the van der Waals Type Between Three Atoms, J. Chem. Phys. 11, 299–300.

    Article  CAS  Google Scholar 

  46. Sprik, M. (1991) Computer Simulation of the Dynamics of Induced Polarization Fluctuations in Water, J. Phys. Chem. 95, 2283–2291.

    Article  CAS  Google Scholar 

  47. Dang, L.X., Rice, J.E., Caldwell, J., and Kollman, P.A. (1991) Ion Solvation in Polarisable Water: Molecular Dynamics Simulations, J. Am. Chem. Soc. 113 , 2481–2486.

    Article  CAS  Google Scholar 

  48. Bernardo, D.N., Ding, Y., Krogh-Jespersen, K., and Levy, RM. (1994) An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields, J. Phys. Chem. 98, 4180–4187.

    Article  CAS  Google Scholar 

  49. Chialvo, A.A. and Cummings, P.T. (1996) Engineering a Simple Polarizable Model for the Molecular Simulation of Water Applicable over Wide Ranges of State Conditions, J. Chem. Phys. 105, 8274–8281.

    Article  CAS  Google Scholar 

  50. Liu, Y.-P., Kim, K., Berne, B.J., Friesner, R.A., and Rick, S.W. (1998) Constructing ab Initio Force Fields for Molecular Dynamics Simulations, J. Chem. Phys. 108, 4739–4755.

    Article  CAS  Google Scholar 

  51. Chen, B., Xing, J., and Siepmann, J.I. (2000) Development of Polarizable Water Force Fields for Phase Equilibrium Calculations, J. Phys. Chem. B 104, 2391–2401.

    Article  CAS  Google Scholar 

  52. Banks, J.L., Kaminski, G.A., Zhou, R, Mainz, D.T., Berne, B.J., and Friesner, R.A. (1999) Parametrizing a Polarizable Force Field from ab Initio Data. I. The Fluctuating Point Charge Model, J. Chem. Phys. 110, 741–754.

    Article  CAS  Google Scholar 

  53. Halgren, T.A. and Damm, W. (2001) Polarizable Force Fields, Curr. Opin. Struct. Biol. 11, 236–242.

    Article  CAS  Google Scholar 

  54. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. (1977) Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comput Phys. 23, 327–341.

    Article  CAS  Google Scholar 

  55. Andersen, H.C. (1983) RATTLE: a “Velocity” Version of the SHAKE Algorithm for Molecular Dynamics Calculations, J. Comput. Phys. 52, 24–34.

    Article  CAS  Google Scholar 

  56. Sprik, M. and Ciccotti, G. (1998) Free Energy from Constrained Molecular Dynamics, J. Chem. Phys. 109, 7737–7744.

    Article  CAS  Google Scholar 

  57. Tuckerman, M., Berne, B.J., and Martyna, G.J. (1992) Reversible Multiple Time Scale Molecular Dynamics, J. Chem. Phys. 97, 1990–2001.

    Article  CAS  Google Scholar 

  58. Tironi, LG., Sperb, R., Smith, P.E., and van Gunsteren, W.F. (1995) A Generalized Reaction Field Method for Molecular Dynamics Simulations, J. Chem. Phys. 102, 5451–5459.

    Article  CAS  Google Scholar 

  59. Ewald, P. (1921) Die Berechnung Optischer und Elektrostatischer Gitterpotentiale, Ann. Phys. 64, 253–287.

    Article  Google Scholar 

  60. Darden, T., York, D., and Pedersen, L. (1993) Particle Mesh Ewald: an N/og(N) Method for Ewald Sums in Large Systems, J. Chem. Phys. 98, 10089–10092.

    Article  CAS  Google Scholar 

  61. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G. (1995) A Smooth Particle Mesh Ewald Method, J. Chem. Phys. 103, 8577–8593.

    Article  CAS  Google Scholar 

  62. Hockney, R.W. and Eastwood, J.W. (1981) Computer Simulation Using Particles, McGraw-Hill, New York.

    Google Scholar 

  63. Greengard, L. and Rokhlin, V. (1987) A Fast Algorithm for Particle Simulations, J. Comput. Phys. 73, 325–348.

    Article  Google Scholar 

  64. Figueirido, F., Levy, R.M., Zhou, R, and Berne, B.J. (1997) Large Scale Simulation of Macromolecules in Solution: Combining the Periodic Fast Multipole Method with Multiple Time Step Integrators, J. Chem. Phys. 106, 9835–9849.

    Article  CAS  Google Scholar 

  65. Nosé, S. and Klein, M.L. (1983) Constant Pressure Molecular Dynamics for Molecular Systems, Mol. Phys. 50, 1055–1076. (b) Nosé, S. (1984) A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys. 52, 255-268.

    Article  Google Scholar 

  66. Hoover, W.G. (1985) Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A 31, 1695–1697.

    Article  Google Scholar 

  67. Martyna, G.J., Klein, M.L., and Tuckerman, M. (1992) Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics, J. Chem. Phys. 97, 2635–2643.

    Article  Google Scholar 

  68. Tobias, DJ., Martyna, G.J., and Klein, M.L. (1993) Molecular Dynamics Simulations of a Protein in the Canonical Ensemble, J. Phys. Chem. 97, 12959–12966.

    Article  CAS  Google Scholar 

  69. Andersen, EC. (1980) Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Chem. Phys. 72, 2384–2393.

    Article  CAS  Google Scholar 

  70. Martyna, G.J., Tobias, D.J., and Klein, M.L. (1994) Constant Pressure Molecular Dynamics Algorithms, J. Chem. Phys. 101, 4177–4189.

    Article  CAS  Google Scholar 

  71. Parrinello, M. and Rahman, A. (1980) Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, Phys. Rev. Lett. 45, 1196–1199.

    Article  CAS  Google Scholar 

  72. Hellmann, H. (1933) On the Role of the Kinetic Electronic Energy for the Interatomic Forces, Z. Phys. 85, 180–190.

    Article  CAS  Google Scholar 

  73. Car, R. and Parrinello, M. (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55, 2471–2474.

    Article  CAS  Google Scholar 

  74. Blöchl, P.E. and Parrinello, M. (1992) Adiabaticity in First-Principles Molecular Dynamics, Phys. Rev. B 45, 9413–9416. (b) Kresse, G. and Hafner, J. (1993) Ab Initio Hellmann-Feynman Molecular Dynamics for Liquid Metals, J. Non-Cryst Solids 156-158, 956-960. (c) Alavi, A., Kohanoff, J., Parrinello, M., and Frenkel, D. (1994) Ab Initio Molecular Dynamics with Excited Electrons, Phys. Rev. Lett. 73, 2599-2602. (d) VandeVondele, J. and DeVita, A. (1999) First-Principles Molecular Dynamics of Metallic Systems, Phys. Rev. B 60, 13241-13244.

    Article  Google Scholar 

  75. Melchionna, S., Ciccotti, G., and Holian, B.L. (1993) Hoover NPT Dynamics for Systems Varying in Shape and Size, Mol. Phys. 78, 533–544.

    Article  CAS  Google Scholar 

  76. Focher, P., Chiarotti, G.L., Bernasconi, M., Tosatti, E., and Parrinello, M. (1994) Structural Phase Transformations via First-Principles Simulation, Europhys. Lett. 26, 345–351. (b) Bernasconi, M., Chiarotti, G.L., Focher, P., Scandolo, S., Tosatti, E., and Parrinello, M. (1995) First-Principle Constant Pressure Molecular Dynamics, J. Phys. Chem. Solids 56, 501-505.

    Article  CAS  Google Scholar 

  77. Marx, D. and Parrinello, M. (1994) Ab Initio Path-Integral Molecular Dynamics, Z. Phys. B 95, 143–144. (b) Marx, D. and Parrinello, M. (1996) Ab Initio Path Integral Molecular Dynamics: Basic Ideas, J. Chem. Phys. 104, 4077-4082. (c) Tuckerman, M.E., Marx, D., Klein, M.L, and Parrinello, M. (1996) Efficient and General Algorithms for Path Integral Car-Parrinello Molecular Dynamics, J. Chem. Phys. 104, 5579-5588. (d) Martyna, G.J., Hughes, A., and Tuckerman, M.E. (1999) Molecular Dynamics Algorithms for Path Integrals at Constant Pressure, J. Chem. Phys. 110, 3275-3290.

    Article  CAS  Google Scholar 

  78. Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas, Phys. Rev. 136, B864–B871. (b) Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133-A1138. For text-book introductions see also: (c) Kohn, W. and Vashista, P. (1983) in March, N.H. and Lundqvist, S. (eds.), Theory of the Inhomogeneous Electron Gas, Plenum Press, New York, pp. 79-148. (d) Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, (e) Dreizler, R.M. and Gross, E.K.U. (1990) Density-Functional Theory, Springer, Berlin.

    Article  Google Scholar 

  79. For an introduction to electronic structure calculations with plane waves see e.g.: (a) Ihm, J., Zunger, A., and Cohen, M.L. (1979) Momentum-Space Formalism for the Total Energy of Solids, J. Phys. C 12, 4409–4422. (b) Yin, M.T. and Cohen, M.L. (1982) Theory of Lattice-Dynamical Properties of Solids. Application to Si and Ge, Phys. Rev. B 26, 3259-3272.

    Google Scholar 

  80. See e.g. Hammes-Schiffer, S. and Andersen, H.C. (1994) A New Formulation of the Hartree-Fock-Roothaan Method for Electronic Structure Calculations on Crystals, J. Chem. Phys. 101, 375–393.

    Article  CAS  Google Scholar 

  81. See e.g.: (a) Hartke, B. and Carter, E.A. (1992) Spin Eigenstate Dependent Hartree-Fock Molecular Dynamics, Chem. Phys. Lett. 189, 358–362. (b) Maluendes, S.A. and Dupuis, M. (1992) Ab Initio SCF Molecular Dynamics: Exploring the Potential Energy Surface of Small Silicon Clusters, Int. J. Quantum Chem. 42, 1327-1338. (c) Heidenreich, A. and Sauer, J. (1995) Ab Initio Molecular Dynamics Simulations of the Li4F4 Cluster, Z. Phys. D 35, 279-283.

    Article  CAS  Google Scholar 

  82. Jellinek, J., Bona?i?-Koutecký, V., Fantucci, P., and Wiechert, M. (1994) Ab Initio Hartree-Fock Self-Consistent-Field Molecular Dynamics Study of Structure and Dynamics of Li8, J. Chem. Phys. 101, 10092–10100.

    Article  CAS  Google Scholar 

  83. Hartke, B. and Carter, E.A. (1992) Ab Initio Molecular Dynamics with Correlated Molecular Wavefunctions: Generalized Valence Bond Molecular Dynamics and Simulated Annealing, J. Chem. Phys. 97, 6569–6578.

    Article  CAS  Google Scholar 

  84. da Silva, A.J.R., Radeke, M.R., and Carter, E.A. (1997) Ab Initio Molecular Dynamics of H2 Desorption from Si(100)-2×1, Surf. Sci. 381, L628–L635.

    Article  Google Scholar 

  85. Liu, Z., Carter, L.E., and Carter, E.A. (1995) Full Configuration Interaction Dynamics of Na2 and Na3, J. Phys. Chem. 99, 4355–4359.

    Article  CAS  Google Scholar 

  86. Woo, T.K., Margl, P.M., Blöchl, P.E., and Ziegler, T. (1997) A Combined Car-Parrinello QM/MM Implementation for ab Initio Molecular Dynamics Simulations of Extended Systems: Application to Transition Metal Catalysis, J. Phys. Chem. B 101, 7877–7880.

    Article  CAS  Google Scholar 

  87. Eichinger, M., Tavan, P., Hutter, J., and Parrinello, M. (1999) A Hybrid Method for Solutes in Complex Solvents: Density Functional Theory Combined with Empirical Force Fields, J. Chem. Phys. 110, 10452–10467.

    Article  CAS  Google Scholar 

  88. Laio, A., VandeVondele, J., and Rothlisberger, U. (2001) A Hamiltonian Electrostatic Coupling Scheme for Hybrid Car-Parrinello Molecular Dynamics Simulations, J. Chem. Phys., submitted.

    Google Scholar 

  89. Duan, Y. and Kollman, P.A. (1998) Pathways to a Protein Folding Intermediate in a 1-Microsecond Simulation in Aqueous Solution, Science 282, 740–744.

    Article  CAS  Google Scholar 

  90. Daura, X., Jaun, B., Seebach, D., van Gunsteren, W.F., and Mark, A.E. (1998) Reversible Peptide Folding in Solution by Molecular Dynamics Simulation, J. Mol. Biol. 280, 925–932.

    Article  CAS  Google Scholar 

  91. Paci, E., Smith, L.J., Dobson, CM, and Karplus, M. (2001) Exploration of Partially Unfolded States of Human Alpha-Lactalbumin by Molecular Dynamics Simulation, J. Mol. Biol. 306, 329–347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rothlisberger, U. (2002). Magic and Mysteries of Modern Molecular Dynamics Simulations. In: Domenicano, A., Hargittai, I. (eds) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals. NATO Science Series, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0546-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0546-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0710-1

  • Online ISBN: 978-94-010-0546-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics