Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 68))

  • 313 Accesses

Abstract

Ab initio molecular dynamics simulations have been utilized to study hydrogen adsorption and storage in carbon-based materials. The method was first applied to studies of H2 adsorption in potassium-intercalated graphite of the second stage. The calculated results were in excellent agreement with the experimental observations. We subsequently performed calculations for H2 adsorption in single walled carbon nanotubes (SWNT’s). We show that SWNT’s undergo significant structural deformation at various temperatures and the curved carbons are responsible for the strong C-H2 interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ralph, T.R. and Hards, G.A. (1998) Chem. Ind. 337.

    Google Scholar 

  2. Verbetsky, V.N., Malyshenko, S.P., Mitrokhin, S.V., Solovei, V.V., and Shmal’ko, Y.F. (1998) Int. J. Hydrogen Energy 23, 1165.

    Article  CAS  Google Scholar 

  3. Noh, J.S., Agarwal, R.K., and Schwarz, J.A. (1987) Int. J. Hydrogen Energy 12, 693.

    Article  CAS  Google Scholar 

  4. Terai, T. and Takahashi, Y. (1992) Mater. Sci. Forum 91-93, 839.

    Article  CAS  Google Scholar 

  5. Pace, E.L. and Siebert, A.R. (1959) J. Phys. Chem. 63, 1398.

    Article  CAS  Google Scholar 

  6. Dericbourg, J. (1976) Surf. Sci. 59, 565.

    Article  CAS  Google Scholar 

  7. Constabaris, G., Sams, J.R., and Halsey, G.D. (1961) J. Phys. Chem. 65, 367.

    Article  CAS  Google Scholar 

  8. Pez, G. and Steyert, W. (1986) U.S. Patent 4,580,404.

    Google Scholar 

  9. Watanabe, K., Soma, M., Onishi, T., and Tamaru, K. (1971) Nature Phys. Science 233, 160.

    CAS  Google Scholar 

  10. Watanabe, K., Kondow, T., Soma, M., Onishi, T., and Tamaru, K. (1973) Proc. Roy. Soc. (London) A333, 51.

    Google Scholar 

  11. Lagrange, P., Métrot, A., and Hérold, A. (1972) C. R. Acad. Sci. C275, 765.

    Google Scholar 

  12. Terai, T. and Takahashi, Y. (1989) Synth. Met. 34, 329. (b) Watanabe, K., Kondow, T., Onishi, T., and Tamaru, K. (1972) Chem. Lett. 477.

    Article  CAS  Google Scholar 

  13. Murakami, H., Kanazawa, I., Sano, M., Enoki, T., and Inokuchi, H. (1989) Synth. Met. 32, 135.

    Article  CAS  Google Scholar 

  14. Yeh, N.C., Enoki, T., Salamanca-Riba, L., and Dresselhaus, G. (1986) Mater. Res. Soc. Symp. Proc. 56, 467.

    Article  CAS  Google Scholar 

  15. Doll, G., Eklund, P.C., and Senatore, G. (1986) in Dresselhaus, M.S. (ed.), Intercalation in Layered Materials, NATO ASI Series, Ser. B, Vol. 148, Plenum Press, New York, p. 309.

    Google Scholar 

  16. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J. (1997) Nature 386, 377.

    Article  CAS  Google Scholar 

  17. Wang, Q. and Johnson, J.K. (1999) J. Chem. Phys. 110, 577.

    Article  CAS  Google Scholar 

  18. Stan, G. and Cole, M.W. (1998) J. Low Temp. Phys. 110, 539.

    Article  CAS  Google Scholar 

  19. Williams, K.A. and Eklund, P.C. (2000) Chem. Phys. Lett. 320, 352.

    Article  CAS  Google Scholar 

  20. Dresselhaus, M.S., Williams, K.A., and Eklund, P.C. (1999) Mater. Res. Soc. Bull. 24, 45.

    CAS  Google Scholar 

  21. Cheng, H, Pez, G., Kern, G., Kresse, G., and Hafner, J. (2001) J. Phys. Chem. B 105, 736.

    Article  CAS  Google Scholar 

  22. Cheng, H., Pez, G.P., and Cooper, A.C. (2001) J. Am. Chem. Soc. 123, 5845.

    Article  CAS  Google Scholar 

  23. Kresse, G. and Hafner, J. (1993) Phys. Rev. B 47, 558. (b) Kresse, G. and Hafner, J. (1994) Phys. Rev. B 49, 14251.

    Article  CAS  Google Scholar 

  24. Kresse, G. and Furthmüller, J. (1996) Comput. Mater. Sei. 6, 15. (b) Kresse, G. and Furthmüller, J. (1996) Phys. Rev. B 54, 11169.

    Article  CAS  Google Scholar 

  25. Vanderbilt, D. (1990) Phys. Rev. B 41, 7892.

    Article  Google Scholar 

  26. Laasonen, K., Pasquarello, A., Car, R., Lee, C, and Vanderbilt, D. (1993) Phys. Rev. B 47, 10142.

    Article  CAS  Google Scholar 

  27. Kresse, G. and Hafner, J. (1994) J. Phys.: Condens. Matter 6, 8245.

    Article  CAS  Google Scholar 

  28. Perdew, J.P. and Zunger, A. (1981) Phys. Rev. B 23, 5048.

    Article  CAS  Google Scholar 

  29. Kern, G., Hafner, I, and Kresse, G. (1996) Surf. Sci. 366, 445. (b) Kern, G. and Hafner, J. (1997) Phys. Rev. B 56, 4203.

    Article  CAS  Google Scholar 

  30. Kresse, G., Furthmüller, J., and Hafner, J. (1995) Europhys. Lett. 32, 729.

    Article  CAS  Google Scholar 

  31. Nosé, S. (1984) J. Chem. Phys. 81, 511.

    Article  Google Scholar 

  32. Monkhorst, H.J. and Pack, J.D. (1976) Phys. Rev. B 13, 5188.

    Article  Google Scholar 

  33. Zabel, H, Jan, Y.M., and Moss, S.C. (1980) Physica B+C 99, 453.

    Article  CAS  Google Scholar 

  34. Gross, A., Wilke, S., and Scheffler, M. (1995) Phys. Rev. Lett. 75, 2718.

    Article  CAS  Google Scholar 

  35. Marx, D. and Parrinello, M. (1996) Science 271, 179.

    Article  CAS  Google Scholar 

  36. Ye, Y., Ahn, C.C., Witham, C, Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E. (1999) Appl. Phys. Lett. 74, 2307.

    Article  CAS  Google Scholar 

  37. Journet, C, Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chappelle, M., Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E. (1997) Nature 388, 756.

    Article  CAS  Google Scholar 

  38. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, I, Xu, C, Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., and Smalley, R.E. (1996) Science 273, 483.

    Article  CAS  Google Scholar 

  39. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C. (eds.) (1996) Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.

    Google Scholar 

  40. Liu, J., Dai, H., Hafner, J.H., Colbert, D.T., Smalley, R.E., Tans, S.J., and Dekker, C. (1997) Nature 385, 780.

    Article  CAS  Google Scholar 

  41. Martel, R., Shea, H.R., and Avouris, P. (1999) Nature 398, 299.

    Article  CAS  Google Scholar 

  42. Kiang, C.-H., Goddard, W.A. III, Beyers, R, and Bethune, D.S. (1996) J. Phys. Chem. 100, 3749.

    Article  CAS  Google Scholar 

  43. Gao, G., Cagin, T., and Goddard, W.A. III (1998) Nanotechnology 9, 184.

    Article  CAS  Google Scholar 

  44. Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M., and Ruoff, R.S. (1999) J. Phys. Chem. B 103, 4330.

    Article  CAS  Google Scholar 

  45. Tombler, T.W., Zhou, C, Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, CS., Tang, M., and Wu, S.-Y. (2000) Nature 405, 769.

    Article  CAS  Google Scholar 

  46. Liu, L., Jayanthi, CS., Tang, M., Wu, S.-Y., Tombler, T.W., Zhou, C, Alexseyev, L., Kong, J., and Dai, H. (2000) Phys. Rev. Lett. 84, 4950.

    Article  CAS  Google Scholar 

  47. Sweany, R.L. and Ogden, J.S. (1997) Inorg. Chem. 36, 2523.

    Article  CAS  Google Scholar 

  48. Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A. (2000) Science 287, 1801.

    Article  CAS  Google Scholar 

  49. Tang, X.-P., Kleinhammes, A., Shimoda, H., Fleming, L., Bennoune, K.Y., Sinha, S., Bower, C, Zhou, O., and Wu, Y. (2000) Science 288, 492.

    Article  CAS  Google Scholar 

  50. Sumanasekera, G.U., Adu, C.K.W., Fang, S., and Eklund, P.C. (2000) Phys. Rev. Lett. 85, 1096.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cheng, H., Cooper, A.C., Pez, G.P., Kern, G., Kresse, G., Hafner, J. (2002). Ab Initio Molecular Dynamical Simulation on H2 Adsorption and Storage in Carbon-Based Materials. In: Domenicano, A., Hargittai, I. (eds) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals. NATO Science Series, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0546-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0546-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0710-1

  • Online ISBN: 978-94-010-0546-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics