Ab Initio Molecular Dynamical Simulation on H2 Adsorption and Storage in Carbon-Based Materials

  • Hansong Cheng
  • Alan C. Cooper
  • Guido P. Pez
  • Georg Kern
  • Georg Kresse
  • Jürgen Hafner
Part of the NATO Science Series book series (NAII, volume 68)


Ab initio molecular dynamics simulations have been utilized to study hydrogen adsorption and storage in carbon-based materials. The method was first applied to studies of H2 adsorption in potassium-intercalated graphite of the second stage. The calculated results were in excellent agreement with the experimental observations. We subsequently performed calculations for H2 adsorption in single walled carbon nanotubes (SWNT’s). We show that SWNT’s undergo significant structural deformation at various temperatures and the curved carbons are responsible for the strong C-H2 interaction.


Molecular Dynamic Simulation Adsorption Energy Single Walled Carbon Nanotubes Radial Distribution Function Hydrogen Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ralph, T.R. and Hards, G.A. (1998) Chem. Ind. 337.Google Scholar
  2. 2.
    Verbetsky, V.N., Malyshenko, S.P., Mitrokhin, S.V., Solovei, V.V., and Shmal’ko, Y.F. (1998) Int. J. Hydrogen Energy 23, 1165.CrossRefGoogle Scholar
  3. 3.
    Noh, J.S., Agarwal, R.K., and Schwarz, J.A. (1987) Int. J. Hydrogen Energy 12, 693.CrossRefGoogle Scholar
  4. 4.
    Terai, T. and Takahashi, Y. (1992) Mater. Sci. Forum 91-93, 839.CrossRefGoogle Scholar
  5. 5.
    Pace, E.L. and Siebert, A.R. (1959) J. Phys. Chem. 63, 1398.CrossRefGoogle Scholar
  6. 6.
    Dericbourg, J. (1976) Surf. Sci. 59, 565.CrossRefGoogle Scholar
  7. 7.
    Constabaris, G., Sams, J.R., and Halsey, G.D. (1961) J. Phys. Chem. 65, 367.CrossRefGoogle Scholar
  8. 8.
    Pez, G. and Steyert, W. (1986) U.S. Patent 4,580,404.Google Scholar
  9. 9.
    Watanabe, K., Soma, M., Onishi, T., and Tamaru, K. (1971) Nature Phys. Science 233, 160.Google Scholar
  10. 10.
    Watanabe, K., Kondow, T., Soma, M., Onishi, T., and Tamaru, K. (1973) Proc. Roy. Soc. (London) A333, 51.Google Scholar
  11. 11.
    Lagrange, P., Métrot, A., and Hérold, A. (1972) C. R. Acad. Sci. C275, 765.Google Scholar
  12. 12. (a)
    Terai, T. and Takahashi, Y. (1989) Synth. Met. 34, 329. (b) Watanabe, K., Kondow, T., Onishi, T., and Tamaru, K. (1972) Chem. Lett. 477.CrossRefGoogle Scholar
  13. 13.
    Murakami, H., Kanazawa, I., Sano, M., Enoki, T., and Inokuchi, H. (1989) Synth. Met. 32, 135.CrossRefGoogle Scholar
  14. 14.
    Yeh, N.C., Enoki, T., Salamanca-Riba, L., and Dresselhaus, G. (1986) Mater. Res. Soc. Symp. Proc. 56, 467.CrossRefGoogle Scholar
  15. 15.
    Doll, G., Eklund, P.C., and Senatore, G. (1986) in Dresselhaus, M.S. (ed.), Intercalation in Layered Materials, NATO ASI Series, Ser. B, Vol. 148, Plenum Press, New York, p. 309.Google Scholar
  16. 16.
    Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J. (1997) Nature 386, 377.CrossRefGoogle Scholar
  17. 17.
    Wang, Q. and Johnson, J.K. (1999) J. Chem. Phys. 110, 577.CrossRefGoogle Scholar
  18. 18.
    Stan, G. and Cole, M.W. (1998) J. Low Temp. Phys. 110, 539.CrossRefGoogle Scholar
  19. 19.
    Williams, K.A. and Eklund, P.C. (2000) Chem. Phys. Lett. 320, 352.CrossRefGoogle Scholar
  20. 20.
    Dresselhaus, M.S., Williams, K.A., and Eklund, P.C. (1999) Mater. Res. Soc. Bull. 24, 45.Google Scholar
  21. 21.
    Cheng, H, Pez, G., Kern, G., Kresse, G., and Hafner, J. (2001) J. Phys. Chem. B 105, 736.CrossRefGoogle Scholar
  22. 22.
    Cheng, H., Pez, G.P., and Cooper, A.C. (2001) J. Am. Chem. Soc. 123, 5845.CrossRefGoogle Scholar
  23. 23. (a)
    Kresse, G. and Hafner, J. (1993) Phys. Rev. B 47, 558. (b) Kresse, G. and Hafner, J. (1994) Phys. Rev. B 49, 14251.CrossRefGoogle Scholar
  24. 24. (a)
    Kresse, G. and Furthmüller, J. (1996) Comput. Mater. Sei. 6, 15. (b) Kresse, G. and Furthmüller, J. (1996) Phys. Rev. B 54, 11169.CrossRefGoogle Scholar
  25. 25.
    Vanderbilt, D. (1990) Phys. Rev. B 41, 7892.CrossRefGoogle Scholar
  26. 26.
    Laasonen, K., Pasquarello, A., Car, R., Lee, C, and Vanderbilt, D. (1993) Phys. Rev. B 47, 10142.CrossRefGoogle Scholar
  27. 27.
    Kresse, G. and Hafner, J. (1994) J. Phys.: Condens. Matter 6, 8245.CrossRefGoogle Scholar
  28. 28.
    Perdew, J.P. and Zunger, A. (1981) Phys. Rev. B 23, 5048.CrossRefGoogle Scholar
  29. 29. (a)
    Kern, G., Hafner, I, and Kresse, G. (1996) Surf. Sci. 366, 445. (b) Kern, G. and Hafner, J. (1997) Phys. Rev. B 56, 4203.CrossRefGoogle Scholar
  30. 30.
    Kresse, G., Furthmüller, J., and Hafner, J. (1995) Europhys. Lett. 32, 729.CrossRefGoogle Scholar
  31. 31.
    Nosé, S. (1984) J. Chem. Phys. 81, 511.CrossRefGoogle Scholar
  32. 32.
    Monkhorst, H.J. and Pack, J.D. (1976) Phys. Rev. B 13, 5188.CrossRefGoogle Scholar
  33. 33.
    Zabel, H, Jan, Y.M., and Moss, S.C. (1980) Physica B+C 99, 453.CrossRefGoogle Scholar
  34. 34.
    Gross, A., Wilke, S., and Scheffler, M. (1995) Phys. Rev. Lett. 75, 2718.CrossRefGoogle Scholar
  35. 35.
    Marx, D. and Parrinello, M. (1996) Science 271, 179.CrossRefGoogle Scholar
  36. 36.
    Ye, Y., Ahn, C.C., Witham, C, Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E. (1999) Appl. Phys. Lett. 74, 2307.CrossRefGoogle Scholar
  37. 37.
    Journet, C, Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chappelle, M., Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E. (1997) Nature 388, 756.CrossRefGoogle Scholar
  38. 38.
    Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, I, Xu, C, Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., and Smalley, R.E. (1996) Science 273, 483.CrossRefGoogle Scholar
  39. 39.
    Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C. (eds.) (1996) Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.Google Scholar
  40. 40.
    Liu, J., Dai, H., Hafner, J.H., Colbert, D.T., Smalley, R.E., Tans, S.J., and Dekker, C. (1997) Nature 385, 780.CrossRefGoogle Scholar
  41. 41.
    Martel, R., Shea, H.R., and Avouris, P. (1999) Nature 398, 299.CrossRefGoogle Scholar
  42. 42.
    Kiang, C.-H., Goddard, W.A. III, Beyers, R, and Bethune, D.S. (1996) J. Phys. Chem. 100, 3749.CrossRefGoogle Scholar
  43. 43.
    Gao, G., Cagin, T., and Goddard, W.A. III (1998) Nanotechnology 9, 184.CrossRefGoogle Scholar
  44. 44.
    Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M., and Ruoff, R.S. (1999) J. Phys. Chem. B 103, 4330.CrossRefGoogle Scholar
  45. 45.
    Tombler, T.W., Zhou, C, Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, CS., Tang, M., and Wu, S.-Y. (2000) Nature 405, 769.CrossRefGoogle Scholar
  46. 46.
    Liu, L., Jayanthi, CS., Tang, M., Wu, S.-Y., Tombler, T.W., Zhou, C, Alexseyev, L., Kong, J., and Dai, H. (2000) Phys. Rev. Lett. 84, 4950.CrossRefGoogle Scholar
  47. 47.
    Sweany, R.L. and Ogden, J.S. (1997) Inorg. Chem. 36, 2523.CrossRefGoogle Scholar
  48. 48.
    Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A. (2000) Science 287, 1801.CrossRefGoogle Scholar
  49. 49.
    Tang, X.-P., Kleinhammes, A., Shimoda, H., Fleming, L., Bennoune, K.Y., Sinha, S., Bower, C, Zhou, O., and Wu, Y. (2000) Science 288, 492.CrossRefGoogle Scholar
  50. 50.
    Sumanasekera, G.U., Adu, C.K.W., Fang, S., and Eklund, P.C. (2000) Phys. Rev. Lett. 85, 1096.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Hansong Cheng
    • 1
  • Alan C. Cooper
    • 1
  • Guido P. Pez
    • 1
  • Georg Kern
    • 2
  • Georg Kresse
    • 2
  • Jürgen Hafner
    • 2
  1. 1.Air Products and Chemicals, Inc.AllentownUSA
  2. 2.Institut für Material Physik and Center for Computational Material ScienceUniversität WienWienAustria

Personalised recommendations