Improper, Blue-Shifting Hydrogen Bond: Theory and Experiment

  • Pavel Hobza
Part of the NATO Science Series book series (NAII, volume 68)


Under certain conditions the interaction of atoms leads to formation of molecules. This type of interaction is relatively strong, with maximum of attraction between specific pairs of atoms. These pairs of atoms form bonds. The bond character ranges from covalent to ionic over a spectrum of polar bonds. Weaker bonds, which keep atoms, groups of atoms or molecules together exist also. One of the strongest and most common is the hydrogen bond (H-bond). Although it is not easy to define H-bonds to include all the features ascribed to them by the different branches of science, these H-bonds always describe an attractive interaction between two species (atoms, groups, molecules) in a structural arrangement where the hydrogen atom, which is covalently bound to one of the species, is placed in between these species. The H-bond plays a key role in chemistry, physics and biology and its consequences, such as the properties of liquid and solid water, were observed before the bond was identified and named [1-3]. The term “hydrogen bond” was first used probably by Linus Pauling in his paper on the nature of chemical bond [4]. H-bonds are responsible [3] for the structure and properties of water, an essential compound for life, as a solvent and in its various phases. Further, H-bonds also play a key role in determining the shapes, properties and functions of biomolecules.


Blue Shift Stabilization Energy Lone Electron Pair Proton Donor Proton Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeffrey, G. A. (1997) An Introduction to Hydrogen Bonding, Oxford University Press, New York.Google Scholar
  2. 2.
    Desiraju, G.R. and Steiner, T. (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford.Google Scholar
  3. 3.
    Scheiner, S. (1997) Hydrogen Bonding, Oxford University Press, New York.Google Scholar
  4. 4.
    Pauling, L (1931) J. Am. Chem. Soc. 53, 1367.CrossRefGoogle Scholar
  5. 5.
    Hohenberg, P. and Kohn, W. (1964) Phys. Rev. 136, B864.CrossRefGoogle Scholar
  6. 6.
    Kohn, W. and Sham, L.J. (1965) Phys. Rev. 140, A 1133.CrossRefGoogle Scholar
  7. 7.
    Hobza, P., Sponer, J., and Reschel, T. (1995) J. Comput. Chem. 16, 1315.CrossRefGoogle Scholar
  8. 8.
    Sim, F., St-Amant, A., Papai, I., and Salahub, D.R. (1992) J. Am. Chem. Soc. 114, 4391.CrossRefGoogle Scholar
  9. 9.
    Laasonen, K., Parrinello, M., Car, R., Lee, C, and Vanderbilt, D. (1993) Chem. Phys. Lett. 207, 208.CrossRefGoogle Scholar
  10. 10.
    Novoa, J.J. and Sosa, C. (1995) J. Phys. Chem. 99, 15837.CrossRefGoogle Scholar
  11. 11.
    Kristyán, S. and Pulay, P. (1994) Chem. Phys. Lett. 229, 175.CrossRefGoogle Scholar
  12. 12.
    Ruiz, E., Salahub, D.R., and Vela, A. (1995) J. Am. Chem. Soc. 117, 1141.CrossRefGoogle Scholar
  13. 13.
    Aliev, M.R. and Watson, J.K.G. (1985) Higher-Order Effects in the Vibration-Rotation Spectra of Semirigid Molecules, in Rao, K.N. (ed.), Molecular Spectroscopy: Modern Research, Vol. 3, Academic Press, Orlando, pp. 1–67.Google Scholar
  14. 14.
    Mills, I.M. (1972) Infrared Spectra. Vibration-Rotation Structure in Asymmetric-and Symmetric-Top Molecules, in Rao, K.N. (ed.), Molecular Spectroscopy: Modern Research, Vol. 1, Academic Press, New York, pp. 115–140.Google Scholar
  15. 15.
    Suzuki, S., Green, P.G., Bumgarner, R.E., Dasgupta, S., Goddard III, W.A., and Blake, G.A. (1992) Science 257, 942.CrossRefGoogle Scholar
  16. 16.
    Pribble, R.N., Garret, A.W., Haber, K., and Zwier, T.S. (1995) J. Chem. Phys. 103, 531.CrossRefGoogle Scholar
  17. 17.
    Djafari, S., Lembach, G., Barth, H.-D., and Brutschy, B. (1996) Z Phys. Chem. 195, 253CrossRefGoogle Scholar
  18. 18.
    Djafari, S., Barth, H.-D., Buchhold, K., and Brutschy, B. (1997) J. Chem. Phys. 107, 10573.CrossRefGoogle Scholar
  19. 19.
    Legem, A.C., Wallwork, A.L., and Warner, H.E. (1993) Chem. Phys. Lett. 191, 97.Google Scholar
  20. 20.
    Legon, A.C., Roberts, B.P., and Wallwork, A.L. (1990) Chem. Phys. Lett. 173, 107.CrossRefGoogle Scholar
  21. 21.
    Steiner, T. and Desiraju, G.R. (1998) Chem Commun. 891.Google Scholar
  22. 22. (a)
    Steiner, T., Tamm, M., Grzegorzewski, A., Schulte, N., Veldman, R, Schreurs, A.M.M., Kanters, J.A., Kroon, J., van der Maas, J., and Lutz, B. (1996) J. Chem. Soc, Perkin Trans. 2 2441. (b) Steiner, T., Starikov, E.B., Amado, A.M., and Teixeira-Dias, J.J.C. (1995) J. Chem. Soc, Perkin Trans. 2 1321. (c) Sodupe, M., Rios, R., Branchadell, V., Nicholas, T., Oliva, A., and Dannenberg, J.J. (1997) J. Am. Chem. Soc. 119, 4232.Google Scholar
  23. 23.
    Aakeröy, C.B. and Seddon, K.R. (1993) Chem. Soc. Rev. 22, 397.CrossRefGoogle Scholar
  24. 24. (a)
    Kock, U. and Popelier, P.L.A. (1995) J. Phys. Chem. 99, 9747. (b) Popelier, P.L.A. (1998) J. Phys. Chem. A. 102, 1873.CrossRefGoogle Scholar
  25. 25.
    Budešínský, M., Fiedler, P., and Arnold, Z. (1989) Synthesis 858.Google Scholar
  26. 26.
    Boldeskul, I.E., Tsymbal, I.F., Ryltsev, E.V., Latajka, Z., and Barnes, A.J. (1997) J. Mol. Struct. 436-437, 167.CrossRefGoogle Scholar
  27. 27.
    Hobza, P., Špirko, V., Selzle, H.L., and Schlag, E.W. (1998) J. Phys. Chem. A. 102, 2501.CrossRefGoogle Scholar
  28. 28.
    Hobza, P., Špirko, V., Havlas, Z., Buchhold, K., Reimann, B., Barth, H.-D., and Brutschy, B. (1999) Chem. Phys. Lett. 299, 180.CrossRefGoogle Scholar
  29. 29.
    Reimann, B., Buchhold, K., Vaupel, S., Brutschy, B., Havlas, Z., Spirko, V., and Hobza, P. (2001) J. Phys. Chem. A 105, 5560.CrossRefGoogle Scholar
  30. 30.
    Hobza, P. and Havlas, Z. (1999) Chem. Phys. Lett. 303, 447CrossRefGoogle Scholar
  31. 31.
    Gu, Y., Kar, T., and Scheiner, S. (1999) J. Am. Chem. Soc. 121, 9411.CrossRefGoogle Scholar
  32. 32.
    Kelley, J.A., Weber, J.M., Robertson, W.H., Lisle, K.M., Johnsson, M.A., Havlas, Z., and Hobza, P. (2001) J. Am. Chem. Soc., submitted.Google Scholar
  33. 33.
    Reed, A.E., Curtiss, L.A., and Weinhold, F. (1988) Chem. Rev. 88, 899.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Pavel Hobza
    • 1
  1. 1.J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech RepublicCenter for Complex Molecular Systems and BiomoleculesPragueCzech Republic

Personalised recommendations