Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 68))

Abstract

Though the hydrogen bond (H-bond) is known since 1920 and in spite of the extraordinary number of books and scientific papers dedicated to it, all attempts to predict its geometry and energetics from the simple knowledge of the chemical structure of the interacting molecules have been so far unsuccessful, a question we have sometimes indicated as the H-bond puzzle. A recent advance in the solution of this problem is represented by the Electrostatic-Covalent H-Bond Model (ECHBM) according to which (/) weak H-bonds are electrostatic in nature but become increasingly covalent with increasing strength, very strong bonds being essentially three-centre-four-electron covalent bonds; (ii) strong and very strong H-bonds may belong only to a limited number of classes which are three for X-H-X homonuclear and four for X-H Yheteronuclear H-bonds; (iii) within each class, H-bonds are the stronger the smaller is ?PA, the difference between the proton affinities of the H-bond donor and acceptor atoms. It is shown that this model leads to an exhaustive classification of all H-bonds in chemical classes which, in turn, becomes a base for the prediction of H-bond strength starting from the chemical structures of the interacting molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilli, G. and Gilli, P. (2000) Towards an unified hydrogen-bond theory, J. Mol. Struct. 552, 1–15.

    Article  CAS  Google Scholar 

  2. Latimer, W.M. and Rodebush, W.H. (1920) Polarity and ionization from the standpoint of the Lewis theory of valence, J. Am. Chem. Soc. 42, 1419–1433.

    Article  CAS  Google Scholar 

  3. Lewis, G.N. (1923) Valence and Structure of Atoms and Molecules, Chemical Catalog Co., New York.

    Google Scholar 

  4. Huggins, M.L. (1931) The role of hydrogen bonds in conduction by hydrogen and hydroxyl ions, J. Am. Chem. Soc. 53, 3190–3191.

    Article  CAS  Google Scholar 

  5. Pauling, L. (1931) The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules, J. Am. Chem. Soc. 53, 1367–1400.

    Article  CAS  Google Scholar 

  6. Huggins, M.L. (1936) Hydrogen bridges in ice and liquid water, J. Phys. Chem. 40, 723–731.

    Article  CAS  Google Scholar 

  7. Pauling, L. (1960) The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd edition, Cornell University Press, Ithaca, NY.

    Google Scholar 

  8. Coulson, C.A. (1952) Valence, Oxford University Press, Oxford.

    Google Scholar 

  9. Coulson, C.A. and Danielsson, U. (1954) Ionic and covalent contributions to the hydrogen bond. Part I, Ark. Fysik 8, 239–244.

    CAS  Google Scholar 

  10. Coulson, C.A. and Danielsson, U. (1954) Ionic and covalent contributions to the hydrogen bond. Part II, Ark. Fysik 8, 245–255.

    CAS  Google Scholar 

  11. Umeyama, H. and Morokuma, K. (1977) The origin of hydrogen bonding. An energy decomposition study, J. Am. Chem. Soc. 99, 1316–1332.

    Article  CAS  Google Scholar 

  12. Morokuma, K. (1977) Why do molecules interact? The origin of electron donoracceptor complexes, hydrogen bonding, and proton affinity, Acc. Chem. Res. 10, 294–300.

    Article  CAS  Google Scholar 

  13. Bader, R.F.W. (1990) Atoms in Molecules: a Quantum Theory, Oxford University Press, New York.

    Google Scholar 

  14. Gilli, G., Bellucci, F., Ferretti, V. and Bertolasi, V. (1989) Evidence for resonance assisted hydrogen bonding from crystal structure correlations on the enol form of the ß-diketone fragment, J. Am. Chem. Soc. 111, 1023–1028.

    Article  CAS  Google Scholar 

  15. Bertolasi, V., Gilli, P., Ferretti, V. and Gilli, G. (1991) Evidence for resonance-assisted hydrogen bonding. 2. Intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded l,3-diaryl-l,3-propanedione enols, J. Am. Chem. Soc. 113, 4917–4925.

    Article  CAS  Google Scholar 

  16. Gilli, P., Bertolasi, V., Ferretti, V. and Gilli, G. (1994) Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H O system by crystal structure correlation methods, J. Am. Chem. Soc. 116, 909–915.

    Article  CAS  Google Scholar 

  17. Gilli, P., Ferretti, V. and Gilli, G. (1996) Hydrogen bonding models: their relevance to molecular modeling, in W. Gans, A. Amann and J.C.A. Boeyens (eds.), Fundamental Principles of Molecular Modelling, Plenum Press, New York, pp. 119–141.

    Google Scholar 

  18. Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding, Oxford University Press, New York.

    Google Scholar 

  19. Bertolasi, V., Gilli, P., Ferretti, V. and Gilli, G. (1996) Resonance assisted O-H O hydrogen bonding: Its role in the crystalline self-recognition of ß-diketone enols and its structural and IR characterization, Chem. Eur. J. 2, 925–934.

    Article  CAS  Google Scholar 

  20. Novak, A. (1974) Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data, Struct. Bonding 18, 177–216.

    Article  CAS  Google Scholar 

  21. Jeffrey, G.A. and Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer Verlag, Berlin, Chapter 7.

    Book  Google Scholar 

  22. Gilli, P., Ferretti, V., Bertolasi, V. and Gilli, G. (1996) A novel approach to hydrogen bonding theory, in M. Hargittai and I. Hargittai (eds.), Advances in Molecular Structure Research, Vol. 2, JAI Press Inc., Greenwich, CT, pp. 67–102.

    Chapter  Google Scholar 

  23. Meot-Ner (Mautner), M. (1984) The ionic hydrogen bond and ionic solvation. 1. NH+ O, NH+ N and OH+ O bonds. Correlations with proton affinities. Deviations due to structural effects, J. Am. Chem. Soc. 106, 1257–1263.

    Article  Google Scholar 

  24. Meot-Ner (Mautner), M. and Sieck, L.W. (1986) The ionic hydrogen bond and ion solvation. Gas-phase solvation and clustering of alkoxide and carboxylate ions, J. Am. Chem. Soc. 108, 7525–7526.

    Article  CAS  Google Scholar 

  25. Meot-Ner (Mautner), M. (1987) Ionic hydrogen bond. Part I. Thermochemistry, structural implications, and role in ion solvation, in J.F. Liebman and A. Greenberg (eds.), Molecular Structure and Energetics, Vol. 4, VCH, Weinheim, pp. 71–103.

    Google Scholar 

  26. Pimentel, G.C. (1951) The bonding of trihalide and bifluoride ions by the molecular orbital method, J. Chem. Phys. 19, 446–448.

    Article  CAS  Google Scholar 

  27. Reid, C. (1959) Semiempirical treatment of the hydrogen bond, J. Chem. Phys. 30, 182–190.

    Article  CAS  Google Scholar 

  28. Kollman, P.A. and Allen, L.C. (1970) A theory of the strong hydrogen bond. Ab initio calculations on HF2 - and H5O2 2 +, J. Am. Chem. Soc. 92, 6101–6107.

    Article  CAS  Google Scholar 

  29. Stevens, E.D., Lehmann, M.S. and Coppens, P. (1977) Experimental electron density distribution of sodium hydrogen diacetate. Evidence for covalency in a short hydrogen bond, J. Am. Chem. Soc. 99, 2829–2831.

    Article  CAS  Google Scholar 

  30. Flensburg, C, Larsen, S. and Stewart, R.F. (1995) Experimental charge density distribution of methylammonium hydrogen succinate monohydrate. A salt with a very short O-H-O hydrogen bond, J. Phys. Chem. 99, 10130–10140.

    Article  CAS  Google Scholar 

  31. Madsen, D., Flensburg, C. and Larsen, S. (1998) Properties of the experimental crystal charge density of methylammonium hydrogen maleate. A salt with a very short intramolecular O-H-O hydrogen bond, J. Phys. Chem. A 102, 2177–2188.

    Article  CAS  Google Scholar 

  32. Madsen, G.K.H., Iversen, B.B., Larsen, F.K., Kapon, M., Reisner, G.M. and Herbstein, F.H. (1998) Topological analysis of the charge density in short intramolecular O-H O hydrogen bonds. Very low temperature X-ray and neutron diffraction study of benzoylacetone, J. Am. Chem. Soc. 120, 10040–10045.

    Article  CAS  Google Scholar 

  33. Schi0tt, B., Iversen, B.B., Madsen, G.H.K. and Bruice, T.C. (1998) Characterization of the short strong hydrogen bond in benzoylacetone by ab initio calculations and accurate diffraction experiments. Implications for the electronic nature of low-barrier hydrogen bonds in enzymatic reactions, J. Am. Chem. Soc. 120, 12117–12124.

    Article  CAS  Google Scholar 

  34. Frisch, M.J., Del Bene, J.E., Binkley, SJ. and Schaeferm, H.F. (1986) Extensive theoretical studies of the hydrogen-bonded complexes (H2O)2, (H2O)2 H+, (HF)2, (HF)2H+, F2H-, and (NH3)2, J. Chem. Phys. 84, 2279–2289.

    Article  CAS  Google Scholar 

  35. Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J. and Watson, D.G. (1979) The Cambridge Crystallographic Data Centre: Computerbased search, retrieval, analysis and display of information, Acta Cryst. B 35, 2331–2339.

    Article  Google Scholar 

  36. Gilli, P., Bertolasi, V., Ferretti, V. and Gilli, G. (2000) Evidence for intramolecular N-H O resonance-assisted hydrogen bonding in ß-enaminones and related heterodienes. A combined crystal-structural, IR and NMR spectroscopic, and quantummechanical investigation, J. Am. Chem. Soc. 122, 10405–10417.

    Article  CAS  Google Scholar 

  37. Cleland, W.W. (1992) Low-barrier hydrogen bonds and low fractionation factor bases in enzymatic reactions, Biochemistry 31, 317–319.

    Article  CAS  Google Scholar 

  38. Cleland, W.W. and Krevoy, M.M. (1994) Low-barrier hydrogen bonds and enzymatic catalysis, Science 264, 1887–1890.

    Article  CAS  Google Scholar 

  39. Frey, P.A., Whitt, S.A. and Tobin, J. B. (1994) A low-barrier hydrogen bond in the catalytic triad of serine protease, Science 264, 1927–1930.

    Article  CAS  Google Scholar 

  40. Desmeules, PJ. and Allen, L.C. (1980) Strong, positive-ion hydrogen bonds: The binary complexes formed from NH3, OH2, FH, PH3, SH2, and C1H, J. Chem. Phys. 72, 4731–4748.

    Article  CAS  Google Scholar 

  41. Ratajczak,H. and Sobczyk, L. (1969) Dipole moments of hydrogen-bonded complexes and proton-transfer effect, J. Chem. Phys. 50, 556–557.

    Article  CAS  Google Scholar 

  42. Malarski, Z., Rospenk, M., Sobczyk, L. and Grech, E. (1982) Dielectric and spectroscopic studies of pentachlorophenol-amine complexes, J. Phys. Chem. 86, 401–406.

    Article  CAS  Google Scholar 

  43. Majerz, I. and Sobczyk, L. (1993) UV absorption spectra of pentachlorophenol and amine bonded complexes in the solid state, J. Chim. Phys. 90, 1657–1666.

    CAS  Google Scholar 

  44. Ault, B.S., Steinback, E. and Pimentel, G.C. (1975) Matrix isolation studies of hydrogen bonding. The vibrational correlation diagram, J. Phys. Chem. 79, 615–620.

    Article  CAS  Google Scholar 

  45. Grech, E., Kalenik, J. and Sobczyk, L. (1979) 35C1 Nuclear quadrupole resonance studies of pentachlorophenol-amine hydrogen-bonded complexes, J. Chem. Soc. Faraday Trans. 175, 1587–1592.

    Google Scholar 

  46. Davidson, W.R., Sunner, J. and Kebarle, P. (1979) Hydrogen bonding of water to onium ions. Hydration of substituted pyridinium ions and related systems, J. Am. Chem. Soc. 101, 1675–1680.

    Article  CAS  Google Scholar 

  47. Huyskens, P.L., Luck, W.A.P. and Zeegers-Huyskens, Th. (eds.) (1991) Intermolecular Forces, Springer-Verlag, Berlin.

    Google Scholar 

  48. Sobczyk, L. (1998) X-ray diffraction, IR, UV and NMR studies on proton transfer equilibrating phenol-N-base systems, Ber. Bunsenges. Phys. Chem. 102, 377–383.

    Article  CAS  Google Scholar 

  49. Olivieri, A.C., Wilson, R.B., Paul, I.C. and Curtin, D.Y. (1989) 13C NMR and X-ray structure determination of l-(arylazo)-2-naphtols. Intramolecular proton transfer between nitrogen and oxygen atoms in the solid state, J. Am. Chem. Soc. 111, 5525–5532.

    Article  CAS  Google Scholar 

  50. Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y.M. and Sherif, O.E. (1993) Intramolecular N-H O hydrogen bonding assisted by resonance. Part 2. Intercorrelation between structural and spectroscopic parameters for five 1,3-diketone arylhydrazones derived from dibenzoylmethane, J. Chem. Soc. Perkin Trans. 2, 2223–2228.

    Google Scholar 

  51. Bertolasi, V., Nanni, L., Gilli, P., Ferretti, V., Gilli, G., Issa, Y.M. and Sherif, O.E. (1994) Intramolecular N-H O=C hydrogen bonding assisted by resonance. Intercorrelation between structural and spectroscopic data for six ß-diketoarylhydrazones derived from benzoylacetone or acetylacetone, New J. Chem. 18, 251–261.

    CAS  Google Scholar 

  52. Bertolasi, V., Gilli, P., Ferretti, V. and Gilli, G. (1994) Intramolecular N-H O hydrogen bonding assisted by resonance. Part 3. Structural studies of l-ketone-2-arylhydrazone derivatives, Acta Cryst. B 50, 617–625.

    Article  Google Scholar 

  53. Bertolasi, V., Gilli, P., Ferretti, V. and Gilli, G. (1995) Intermolecular N-H-O hydrogen bonds assisted by resonance. Heteroconjugated systems as hydrogen-bondstrengthening functional groups, Acta Cryst. B 51, 1004–1015.

    Article  Google Scholar 

  54. Bertolasi, V., Gilli, P., Ferretti, V. and Gilli, G. (1998) Intermolecular N-H-O hydrogen bonding assisted by resonance. II. Self assembly of hydrogen-bonded secondary enaminones in supramolecular catemers, Acta Cryst. B 54, 50–65.

    Article  Google Scholar 

  55. Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. and Vaughan, K. (1999) Interplay between steric and electronic factors in determining the strength of intramolecular resonance-assisted N-H O hydrogen bond in a series of ß-ketoarylhydrazones, New J. Chem. 23, 1261–1267.

    Article  CAS  Google Scholar 

  56. Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G., Vaughan, K. and Jollimore, J.V. (1999) Interplay of hydrogen bonding and other molecular interactions in determining the crystal packing of a series of anti-ß-ketoarylhydrazones, Acta Cryst. B 55, 994–1004.

    Article  Google Scholar 

  57. Filarowski, A., Glowiak, T. and Koll, A. (1999) Strengthening of the intramolecular 0 H N hydrogen bonds in Schiff bases as a result of steric repulsion, J. Mol. Struct. 484, 75–89.

    Article  CAS  Google Scholar 

  58. March, J. (1985) Advanced Organic Chemistry, 3rd edition, John Wiley&Sons, New York, Chapter 2, pp. 37–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilli, P., Gilli, G. (2002). Hydrogen Bond at the Dawn of the Xxi Century. New Methods, New Results, New Ideas. In: Domenicano, A., Hargittai, I. (eds) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals. NATO Science Series, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0546-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0546-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0710-1

  • Online ISBN: 978-94-010-0546-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics