Advertisement

Strong-Coupling Superconductivity with D-Wave Order Parameter and S-Wave Gap

Application to cuprates
  • A. S. Alexandrov
Part of the NATO Science Series book series (NAII, volume 67)

Abstract

Over the last decade a few competing models of high-temperature superconductivity were proposed, most of them with short-range interactions due to electron repulsive correlations. However, assessing the role of different interactions in novel superconductors one has to take into account that these materials are highly polarizable ionic lattices, where the Fröhlich electron-phonon interaction with optical phonons should be strong. Indeed, a parameter-free estimate[1] based on the measured dielectric constants shows that the polaron binding energy, Ep is about 0.5 eV or larger in oxides. Hence, the Fröhlich interaction should play an important role. Also, because of a poor screening, the direct unscreened Coulomb repulsion is important. There are extensive experimental [2, 3, 4, 5, 6, 7] and theoretical studies[8, 9, 10, 11], which prove that the electron-phonon (el-ph) interaction in high-Tc superconductors is exceptionally strong. Electron correlations are strong as well shaping the Mott-Hubbard insulating state of many parent (undoped) compounds [12]. Hence, the theory of high- Tc superconductors must treat both interactions on equal footing as was suggested some time ago [8]. Motivated by the fact that el-ph interaction is long-ranged in the cuprates because of poor screening, we have proposed a new approach to the high-Tc problem introducing a finite-range (Fröhlich) interaction [13, 14, 15]. The analytical [13] and Monte-Carlo [15] studies of a simple chain model with a long-range el-ph coupling revealed a several order lower effective mass of the small Fröhlich polaron compared with the small Holstein polaron. Later the single-polaron and bipolaron cases of the chain model were analyzed in more detail in Refs.[16] and [17], respectively. These

Keywords

Tunnelling Conductance Poor Screening Holstein Model Green Function Underdoped Cuprates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lett. 84, 2043 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    G. Zhao, M. B. Hunt, H. Keller, and K. A. Müller, Nature 385, 236 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    A. Lanzara et al., Nature 412, 510 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    T. Timusket al in Anharmonic Properties of High-Tc Cuprates, eds. D. Mihailović et al (World Scientific, Singapore, 1995), p. 171.Google Scholar
  5. 5.
    T. Egami, J. Low Temp. Phys. 105, 791(1996).CrossRefGoogle Scholar
  6. 6.
    A. Lanzara, et al Journ. Phys.: Condens. Mat. 11, L541 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    D. R. Temprano et al, Phys. Rev. Lett. 84, 1982 (2000).CrossRefGoogle Scholar
  8. 8.
    A. S. Alexandrov and N. F. Mott, Rep. Prog. Phys. 57, 1197 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    J. T. Devreese, in Encyclopedia of Applied Physics vol. 14, p. 383 (VCH Publishers, 1996).Google Scholar
  10. 10.
    P. B. Allen, Nature 412, 494 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    L. P. Gor’kov, J. Supercond. 12, 9 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    P. W. Anderson, Physica C 341, 9 (2000).CrossRefGoogle Scholar
  13. 13.
    A. S. Alexandrov, Phys. Rev. B 53, 2863 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    A. S. Alexandrov, in ‘Models and Phenomenology for Conventional and High-temperature Superconductivity’ (Course CXXXVI of the Intenational School of Physics ‘Enrico Fermi’), eds. G. Iadonisi, J. R. Schrieffer and M. L. Chiofalo, (IOS Press, Amsterdam), p. 309 (1998).Google Scholar
  15. 15.
    A. S. Alexandrov and P. E. Kornilovitch, Phys. Rev. Lett. 82, 807 (1999); cond-mat/0111549.ADSCrossRefGoogle Scholar
  16. 16.
    H. Fehske, J. Loos, and G. Wellein, Phys. Rev. B 61, 8016 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    J. Boncaj and S. A. Trugman, Phys. B 64, 4507 (2001).Google Scholar
  18. 18.
    A. S. Alexandrov, in ‘Lectures on the Physics of Highly Correlated Electron Systems V’, ed. F. Mancini (AIP, Melville, New York (2001)), p.1.Google Scholar
  19. 19.
    A. S. Alexandrov and P. P. Edwards, Physica C 331, 97 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) (Sov. Phys. JETP 7, 996 (1958)).MathSciNetGoogle Scholar
  21. 21.
    G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (I960); ibid 39, 1437 (1960) (Sov. Phys. JETP 11, 696 (1960; 12, 1000 (I960)).Google Scholar
  22. 22.
    A. S. Alexandrov, Zh. Fiz. Khim. 57, 273 (1983) (Russ.J.Phys.Chem.57, 167 (1983))Google Scholar
  23. 23.
    A. S. Alexandrov and E. A. Mazur, Zh. Eksp. Teor. Fiz. 96, 1773 (1989).Google Scholar
  24. 24.
    A. S. Alexandrov, Phys. Rev. B 46, 2838 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    L. D. Landau, J. Phys. (USSR) 3, 664 (1933).MATHGoogle Scholar
  26. 26.
    T. Holstein, Ann.Phys. 8, 325; ibid 343 (1959).ADSMATHCrossRefGoogle Scholar
  27. 27.
    A. S. Alexandrov, Europhys. Lett. 56, 92 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    In the momentum representation the electron-phonon interaction with the electron and phonon operators, respectively, and z the lattice coordination number.Google Scholar
  29. 29.
    E. I. Rashba, Opt. Spectr. 2, 75 (1957), see also in Excitons eds. E. I. Rashba and D. M. Struge (Nauka, Moscow (1985)).Google Scholar
  30. 30.
    V. V. Kabanov and O. Yu. Mashtakov, Phys. Rev. B47, 6060 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    A. S. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981).ADSCrossRefGoogle Scholar
  32. 32.
    J. Annett, N. Goldenfeld and A. J. Legget, in: D. M. Ginsberg (ed), Physical Properties of High Temperature Superconductors, vol. 5, World Scientific, Singapore, 375 (1996).CrossRefGoogle Scholar
  33. 33.
    D. A. Wollman et al, Phys. Rev. Lett. 71, 2134 (1993); C. C. Tsuei et al Phys. Rev. Lett. 73, 593 (1994); J. R. Kirtley et al Nature 373, 225 (1995); C. C. Tsuei et al Science 272, 329 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    H. Walter et al, Phys. Rev. Lett. 80, 3598 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    A. S. Alexandrov, Physica C (Amsterdam) 305, 46 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    A. S. Alexandrov, V. V. Kabanov and N. F. Mott, Phys. Rev. Lett. 77, 4796 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    K. A. Müller et al J.Phys.: Condens. Matter 10, L291 (1998).CrossRefGoogle Scholar
  38. 38.
    H. Hancotte et al Phys. Rev. B55, R3410 (1997).ADSCrossRefGoogle Scholar
  39. 39.
    Ch. Renner et al, Phys. Rev. Lett. 80, 149 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    B. Batlogg et al Physica C (Amsterdam) 135-140, 130 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    J. W. Loram et al Physica C (Amsterdam), 235, 134 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    A. S. Alexandrov, Physica C 182, 327 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    A. S. Alexandrov and A. F. Andreev, Eurolett. 54, 373 (2001).ADSGoogle Scholar
  44. 44.
    A. S. Alexandrov and C. J. Dent, Phys. Rev. B 60, 15414 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    A. S. Alexandrov and C. Sricheewin, Europhys. Lett., 51, 188 (2000); cond-mat/0102284.ADSCrossRefGoogle Scholar
  46. 46.
    A. S. Alexandrov and C. J. Dent, J. Phys.: Condens. Matter 13, L417 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • A. S. Alexandrov
    • 1
  1. 1.Department of PhysicsLoughborough UniversityLoughboroughUK

Personalised recommendations