Phase Transitions in Mesoscopic Cylinders

  • W. V. Pogosov
  • A. L. Rakhmanov
Part of the NATO Science Series book series (NAII, volume 67)


Recent achievements in electronic device miniaturization allow one to study the mesoscopic superconducting samples with sizes of the order of the coherence length ξ(T). Such structures attract a considerable current interest as a possible basis for low temperature electronics. The superconducting state was studied experimentally for different-shaped samples: discs, loops, double loops, dots etc. [1, 2]. It was shown that the sample shape and sizes affect significantly the phase diagrams of the mesoscopic superconductors.


Critical Field Trial Function Equilibrium Magnetization Lower Landau Level Vortex Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Hae-sendonck, and Y. Bruynseraede, Nature 373, 319 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, and F. M. Peeters, Nature 390, 259 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Schweigert, F. M. Peeters, and P. S. Deo, Phys. Rev. Lett. 81, 2783 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Schweigert and F. M. Peeters, Phys. Rev. Lett. 83, 2409 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    J. J. Palacios, Phys. Rev. Lett. 84, 1796 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    G. F. Zharkov, Phys. Rev. B 63, 224513 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    W. V. Pogosov, A. L. Rakhmanov, and E. A. Shapoval, Physica C 356, 225 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    V. M. Fomin, J. T. Devreese, V. Bruyndoncx, and V. V. Moshchalkov, Phys. Rev. B 62, 9186 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    R. O. Zaitsev, Zh. Eksp. Teor. Fiz. 48, 1759 (1965) [Sov. Phys. JETP 21, 1178 (1965)].Google Scholar
  10. 10.
    E. A. Shapoval, Pis’ma Zh. Eksp. Teor. Fiz. 64, 320 (1996) [JETP Letters64, 350 (1996)].Google Scholar
  11. 11.
    S. V. Yampolskii and F. M. Peeters, Phys. Rev. B 62, 9663 (2000). 413ADSCrossRefGoogle Scholar
  12. 12.
    B. J. Baelus, S. V. Yampolskii, F. M. Peeters, E. Montevecchi, and J. O. Indekeu, cond-mat/0106403 (2001).Google Scholar
  13. 13.
    J. R. Clem, J. Low Temp. Phys. 18, 427 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    W. V. Pogosov, K. I. Kugel, A. L. Rakhmanov, and E. H. Brandt, Phys. Rev. B 64, 064517 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    R. C. Jones, M. K. Keene, and P. Nurwantoro, Physica C 298, 140 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    W. V. Pogosov, cond-mat/0108492 (2001).Google Scholar
  17. 17.
    V.A. Schweigert and F.M. Peeters, Physica C 332, 266 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • W. V. Pogosov
    • 1
  • A. L. Rakhmanov
    • 2
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow regionRussia
  2. 2.Russian Academy of SciencesInstitute for Theoretical and Applied ElectrodynamicsMoscowRussia

Personalised recommendations