Theoretical Analysis of the Symmetry of the Order Parameter in Unconventional Superconductors: Singlet Versus Triplet Pairing

  • D. Manske
  • I. Eremin
  • K. H. Bennemann
Part of the NATO Science Series book series (NAII, volume 67)


The novel superconductivity with Tc ≈ 1.5K observed recently in layered Sr2RuO4 seems to be a new example of unconventional superconductivity [1]. Its structure is isomorphic to the high-Tc cuprate family La2-x ;Sr x CuO4 which, however, has a Tc ≈ 30K and is a singulet (but unconventional) superconductor. This makes the theoretical comparison of ruthenates and high-Tc cuprates very interesting. In Sr2RuO4 the presence of incommensurate antiferromagnetic and ferromagnetic spin fluctuations has been confirmed recently by inelastic neutron scattering (INS) [2] and NMR 17O Knight shift [3], respectively, suggesting also a pairing mechanism for Cooper-pairs due to spin fluctuations like in cuprates. This is further supported by the observed non s-wave symmetry of the order parameter. In contrast to cuprates, NMR [4] and polarized neutron scattering [5] measurements indicate spin-triplet state Cooper-pairing. In analogy to 3He this led theorists to conclude that p-wave superconductivity is present [6]. However, by fitting the specific heat and the ultrasound attenuation Maki and co-workers doubted p-wave superconductivity [7] and propose an f-wave symmetry of the superconducting order parameter. A similar conclusion was drawn in Ref. [8]. Recently it has been reported that also thermal conductivity measurements are most consistent with f-wave symmetry [9].


Fermi Surface Spin Fluctuation Spin Susceptibility Superconducting Order Parameter Pairing Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maeno, Y., Hashimoto H., Yoshida K., Nishizaki S., Fujita T., Bednorz J.G., and Lichtenberg F. (1994) Superconductivity in a layered perovskite without copper, Nature 372, 532–534.ADSCrossRefGoogle Scholar
  2. 2.
    Sidis, Y., Braden, M., Bourges, P., Hennion, B., Nishizaki, S., Maeno, Y., and Mori, Y. (1999) Evidence for Incommensurate Spin Fluctuations in Sr2RuO4, Phys. Rev. Lett. 83, 3320–3323.ADSCrossRefGoogle Scholar
  3. 3.
    Imai, T., Hunt, A.W., Thurber, K.R., and Chou, F.C. (1998) 17O NMR Evidence for Orbital Dependent Ferromagnetic Correlations in Sr2RuO4, Phys. Rev. Lett. 81, 3006–3009 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Ishida, K., Kitaoka, Y., Asayama, K., Ikeda, S., Nishizaki, S., Maeno, Y., Yoshida, K., and Fujita. T. (1997) Anisotropie pairing in superconducting Sr2RuO4: Ru NMR and NQR studies, Phys. Rev. B 56, R505–R508.ADSCrossRefGoogle Scholar
  5. 5.
    Duffy, J.A., Hayden, S.M., Maeno, Y., Mao, Kulda, J., and Mclntyre, G.J. (2000) Polarized-Neutron Scattering Study of the Cooper-Pair Moment in Sr2RuO4, Phys. Rev. Lett. 85, 5412–5415.ADSCrossRefGoogle Scholar
  6. 6.
    Sigrist, M., Agterberg, D., Furusaki, A., Honercamp, C, Ng, K.K., Rice, T.M., Zhitomirsky, M.E. (1999) Phenomenology of the superconducting state in Sr2RuO4, Physica C 317-318, 134–141; Tewordt, L. (1999) Collective Order Parameter Modes and Spin Fluctuations for Spin-Triplet Superconducting State in Sr2RuO4, Phys. Rev. Lett. 83, 1007-1010.ADSCrossRefGoogle Scholar
  7. 7.
    Won, H. and Maki, K. (2000) Possible f-wave superconductivity in Sr2RuO4?, Europhys. Lett 52, 427–433.ADSCrossRefGoogle Scholar
  8. 8.
    Hasegawa, Y., Machida, K., and Ozaki, M. (2000) Spin triplet superconductivity with line nodes in Sr2RuO4, J. Phys. Soc. Jpn. 69, 336–340.ADSCrossRefGoogle Scholar
  9. 9.
    Izawa, K. K., Takahashi, H., Yamaguchi, H., Matsuda, Y., Suzuki, M., Sasaki, T., Fukase, T., Yoshida, Y., Settai, R., Onuki, Y. (2001) Superconducting Gap Structure of Spin-Triplet Superconductor Sr2RuO4 Studied by Thermal Conductivity, Phys. Rev. Lett. 86, 2653–2658; Tanatar, M.A., Suzuki, M., Nagai, S., Mao, Z.Q., Maeno, Y., Ishiguro, T. (2001) Anisotropy of Magnetothermal Conductivity in Sr2RuO4, Phys. Rev. Lett. 86, 2649-2653.ADSCrossRefGoogle Scholar
  10. 10.
    King, D.M., Shen, Z.-X., Dessau, D.S., Wells, B.O., Spicer, W.E., Arko, A.J., Marshall, D.S., DiCarlo, J., Loeser, A.G., Park, C.H., Ratner, E.R., Peng, J.L., Li, Z.Y., Greene, R.L. (1993) Fermi surface and electronic structure of Nd2-xCexCuO4ð, Phys. Rev. Lett. 70, 3159–31Google Scholar
  11. 11.
    Damascelli, A., Lu, D.H., Shen, K.M., Armitage, N.P., Ronning, F., Feng, D.L., Kim, C, Shen, Z.-X., Kimura, T., Tokura, Y., Mao, Z.Q., Maeno, Y. (2000) Fermi Surface, Surface States, and Surface Reconstruction in Sr2RuO4, Phys. Rev. Lett. 85, 5194–5197.Google Scholar
  12. 12.
    Mackenzie, A.P., Julian, S.R., Diver, A.J., McMullan, G.J., Ray, M.P., Lonzarich, G.G., Maeno, Y., Nishizaki, S., Fujita, T. (1996) Quantum Oscillations in the Layered Perovskite Superconductor Sr2RuO4, Phys. Rev. Lett. 76, 3786–3789.ADSCrossRefGoogle Scholar
  13. 13.
    Morr, D.K., Trautmann, P.F., and Graf, M.J. (2001) Resonance Peak in Sr2RuO4: Signature of Spin Triplet Pairing, Phys. Rev. Lett. 86, 5978–5981.ADSCrossRefGoogle Scholar
  14. 14.
    Bickers, N.E., Scalapino, D.J., and White, S.R. (1989) Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model, Phys. Rev. Lett. 62, 961–964.ADSCrossRefGoogle Scholar
  15. 15.
    Dahm, T., and Tewordt, T. (1995) d-Wave Superconducting State of the Two-Dimensional Hubbard Model, Phys. Rev. Lett. 74, 793–797.ADSCrossRefGoogle Scholar
  16. 16.
    Langer, M., Schmalian, J., Grabowski, S., and Bennemann, K.H. (1995) Theory for the excitation spectrum of high-Tc superconductors: quasiparticle dispersion and shadows of the Fermi surface, Phys. Rev. Lett. 75, 4508–4511.ADSCrossRefGoogle Scholar
  17. 17.
    Manske, D., Eremin, I., and Bennemann, K.H. (2000) Theory for electron-doped cuprate superconductors: d-wave symmetry order parameter, Phys. Rev. B 62, 13922–13925.ADSCrossRefGoogle Scholar
  18. 18.
    Takimoto, T. (2000) Orbital fluctuation-induced triplet superconductivity: Mechanism of superconductivity in Sr2RuO4, Phys. Rev. B 62, R14641–R14644.ADSCrossRefGoogle Scholar
  19. 19.
    We also include the matrix element for the spin susceptibility taken to be 1 between two states which have the same maximal character and 0 otherwise in accordance with Ref. [20].Google Scholar
  20. 20.
    Mazin, I.I. and Singh, D.J. (1999) Competitions in Layered Ruthenates: Ferromag-netism versus Antiferromagnetism and Triplet versus Singlet Pairing, Phys. Rev. Lett. 82, 4324–4325.ADSCrossRefGoogle Scholar
  21. 21.
    Kontoni, H., Kanki, K., and Ueda, K. (1999) Hall effect and resistivity in high-Tc superconductors: The conserving approximation, Phys. Rev. B 59, 14723–14739.ADSCrossRefGoogle Scholar
  22. 22.
    Eremin, I., Manske, D., Joas, C, and Bennemann, K.H. (2001) Electronic theory for superconductivity in Sr2RuO4: triplet pairing due to spin-fluctuation exchange, cond-mat/0102074 (unpublished).Google Scholar
  23. 23.
    Anderson, P.W., and Brinkmann, W.F. in “The physics of liquid and solid Helium”, eds. Bennemann, K.H. and Ketterson, J.B. (1978) V. 2, Wiley-Interscience PublicatiGoogle Scholar
  24. 24.
    Berk, N.F., Schrieffer, J.R. (1966) Effect of Ferromagnetic Spin Correlations on Superconductivity Phys. Rev. Lett. 17 433–435Google Scholar
  25. 25.
    Batlogg, B., Cheong, S.-W., Thomas, G.A., Cooper, S.L., Rupp, L.W., Rapkine, D.H., Cooper, A.S. (1991) Oxygen isotope effect in Nd1.85Ce0.15CuO4 Physica C 185-189, 1385–1387.ADSCrossRefGoogle Scholar
  26. 26.
    Dahm, T., Manske, D., Fay, D., Tewordt, L. (1996) Isotope effect and resistivity in the Hubbard model for d-wave superconductivity, Phys. Rev. B 54, 12006–12009.ADSCrossRefGoogle Scholar
  27. 27.
    Stadiober, B., Krug, G., Nemetschek, R., Hackl, R., Cobb J.L., Markert, J.T. (1995) Is Nd2-xCexCuO4 a High-Temperature Superconductor? Phys. Rev. Lett. 74, 4911–4913.ADSCrossRefGoogle Scholar
  28. 28.
    If the energy difference between p-and f-wave symmetry in the RuO2 planes is larger than the energy gain for superconductivity resulting from interplane coupling, one may determine the pairing symmetry from the in-plane electronic structure.Google Scholar
  29. 29.
    Zhitomirsky, M.E. and Rice, T.M. (2001) Interband Proximity Effect and Nodes of Superconducting Gap in Sr2RuO4, Phys. Rev. Lett. 87, 057001–057003.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • D. Manske
    • 1
  • I. Eremin
    • 1
    • 2
  • K. H. Bennemann
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinBerlinGermany
  2. 2.Physics DepartmentKazan State UniversityKazanRussia

Personalised recommendations