Skip to main content

Correlation Between Superconducting Gap and Pseudogap in High-T C Cuprates

  • Chapter
Book cover New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

Abstract

One of most striking features of high-Tc cuprates consists of an eccentric relationship between Tc and the maximum gap value 2Δ0 at T≪Tc1 particularly, in the underdoped (UD) region; Tc decreases with hole-doping level p while 2Δ0 continues to increase with p, which is in sharp contrast to the BCS result.1-6) This issue seems to be closely related to the development or existence of a pseudo gap (PG) in the normal state. Therefore, to clarify the nature of the PG as well as the superconductivity is very important for understanding the mechanism of the superconductivity in high-Tc cuprates. The PG was first reported as a spin gap (SG) in low- energy spin excitation spectrum in NMR relaxation-time T 1 experiments on underdoped YBa2Cu3O6+ð (Y123).7,8) The SG has been confirmed in the neutron scattering and uniform magnetic susceptibility measurements.9,10)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Harris et al, Phys. Rev. B 54 (1996) 15665.

    Article  ADS  Google Scholar 

  2. M. Oda et al., Physica C 281 (1997) 135.

    Article  ADS  Google Scholar 

  3. T. Nakano et al., J. Phys. Soc. Jpn. 67 (1998) 2622.

    Article  ADS  Google Scholar 

  4. N. Miyakawa et al., Phys. Rev. Lett, bf 80 (1998) 157.

    Article  ADS  Google Scholar 

  5. Ch. Renner et al., Phys. Rev. Lett. 80 (1998) 149.

    Article  ADS  Google Scholar 

  6. J. C. Campuzano et al., Phys. Rev. Lett. 83 (1999) 3709.

    Article  ADS  Google Scholar 

  7. H. Yasuoka, T. Imai and T. Shimizu, Springer Series in Solid State Science 89, Strong Correlation and Superconductivity, (Springer-Verlag, New York, 1989) p. 254.

    Google Scholar 

  8. W.W. Warren et al., Phys Rev. Lett. 62 (1989) 1193.

    Article  ADS  Google Scholar 

  9. J. Rossat-Mignod et al., Physica C 185-189 (1991) 86.

    Article  ADS  Google Scholar 

  10. H. Alloul, T. Ohno, T. Tewrdt, Phys. Rev. Lett. 63 (1989) 1700.

    Article  ADS  Google Scholar 

  11. S. Uchida, Jpn. J. Appl. Phys., 32 (1993) 3784.

    Article  ADS  Google Scholar 

  12. J. W. Loram et al., Phys. Rev. Lett., 71 (1993) 1740.

    Article  ADS  Google Scholar 

  13. A. G. Loeser et al., Science 273 (1996) 325.

    Article  ADS  Google Scholar 

  14. H. Ding et al., Nature 383 (1996) 51.

    Article  ADS  Google Scholar 

  15. A. Matsuda, etal., Phys. Rev. B 60 (1999) 1377.

    Article  ADS  Google Scholar 

  16. V. M. Krasnov etal. Phys. Rev. Lett. 84 (2000) 5860.

    Article  ADS  Google Scholar 

  17. M. Suzuki and T. Watanabe, Phys. Rev. Lett, in press.

    Google Scholar 

  18. A. Ino etal Phys. Rev. Lett., 81 (1998) 2124.

    Article  ADS  Google Scholar 

  19. T. Sato et al., Physica C 341-348 (2000) 815.

    Article  Google Scholar 

  20. D. C. Johnston, Phys. Rev. Lett. 62 (1989) 957.

    Article  ADS  Google Scholar 

  21. M. Oda, H. Matsuki and M. Ido, Solid State Commun. 74 (1990) 1321.

    Article  ADS  Google Scholar 

  22. H. Takagi et al., Phys. Rev. B 40 (1989) 2254.

    Article  ADS  Google Scholar 

  23. T. Nakano et al., Phys. Rev. B 49 (1994) 16000.

    Article  ADS  Google Scholar 

  24. T. Nishikawa, J. Takeda and M. Sato, J. Phys. Soc. Jpn. 63 (1994) 1441

    Article  ADS  Google Scholar 

  25. H. Y. Hwang etal., Phys. Rev. Lett. 72 (1994) 2636.

    Article  ADS  Google Scholar 

  26. W. A. Groen, D. M. de Leeuw and L. F. Feiner, Physica C 165 (1990) 55.

    Article  ADS  Google Scholar 

  27. R. M. Dipasupil et al., Physica C, in press.

    Google Scholar 

  28. N. Momono et al., Physica C 341-348 (2000) 909.

    Article  Google Scholar 

  29. N. Momono et al., J. Low. Tern. Phys., 117 (1999) 353.

    Article  ADS  Google Scholar 

  30. T. Nakano et al., J. Phys. Soc. Jpn., 67 (1998) 2622.

    Article  ADS  Google Scholar 

  31. C. Manabe, M. Oda, and M. Ido, J. Phys. Soc. Jpn., 66 (1997) 1776.

    Article  ADS  Google Scholar 

  32. Z.-X. Shen and J. R Schrieffer, Phys. Rev. Lett. 78 (1997) 1771.

    Article  ADS  Google Scholar 

  33. N. Momono and M. Ido, Physica C 264 (1996) 311.

    Article  ADS  Google Scholar 

  34. M. Suzuki and T. Watanabe, Phys. Rev. Lett. 85 (2000) 4787.

    Article  ADS  Google Scholar 

  35. R. E. Walstedt et al., Phys. Rev. B 44 (1991) 7760.

    Article  ADS  Google Scholar 

  36. K. Ishida et al., Phys. Rev. B 58 (1998) 5960.

    Article  ADS  Google Scholar 

  37. F. J. Ohkawa, J. Phys. Soc. Jpn. 56 (1987) 2267.

    Article  ADS  Google Scholar 

  38. H. Won and K. Maki, Phys. Rev. B 49 (1994), 1397.

    Article  ADS  Google Scholar 

  39. Tanamoto et al., J. Phys. Soc. Jpn. 61 (1992) 1886.

    Article  ADS  Google Scholar 

  40. S-S Lee and S-H S. Salk, submitted to Phys. Rev. Lett.

    Google Scholar 

  41. V. J. Emery and S. A. Kivelson, Nature 374 (1995) 434.

    Article  ADS  Google Scholar 

  42. Y. Yanase and K. Yamada, Phys. Soc. Jpn. 68 (1999) 2999.

    Article  ADS  Google Scholar 

  43. T. H. Gimm and S. S. Salk, Phys. Rev. B 60 (1999) 6324.

    Article  ADS  Google Scholar 

  44. M. Ido, N. Momono and M. Oda, J. Low Temp. Phys., 117 (1999), 329

    Article  ADS  Google Scholar 

  45. M. Oda et.al. J. Phys. Soc. Jpn., 69 (2000) 983.

    Article  ADS  Google Scholar 

  46. R. Nemetschek et al., Phys. Rev. Lett. 78 (1997) 1771.

    Article  Google Scholar 

  47. G. Deutscher, Nature 387 (1999) 410.

    Article  ADS  Google Scholar 

  48. H. Ding et al., cond-mat/0006143.

    Google Scholar 

  49. 24. P. A. Lee and X. G. Wen, Phys. Rev. Lett. 78 (1997) 4111.

    Article  ADS  Google Scholar 

  50. X. G. Wen and P. A. Lee, Phys. Rev. Lett. 80 (1998) 2193.

    Article  ADS  Google Scholar 

  51. V. B. Geshkenbein etal., Phys. Rev. B 55 (1997) 3173.

    Article  ADS  Google Scholar 

  52. M. R. Norman etal.: Nature 392 (1998) 157.

    Article  ADS  Google Scholar 

  53. Y. Yanase and K. Yamada, Phys. Soc. Jpn. 68 (1999) 548.

    Article  ADS  Google Scholar 

  54. Y. Uemura et al, Phys. Rev. Lett. 62 (1989) 2317; ibid. 66 (1991) 2665.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oda, M., Momono, N., Ido, M. (2002). Correlation Between Superconducting Gap and Pseudogap in High-T C Cuprates. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics