Skip to main content

Pair-Transfer Superconductivity on Doping Determined Bands and the Pseudogap

  • Chapter
New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

Abstract

Doping treatments are of decisive significance in the creation of cuprate high-Tc superconductivity and the rich phase diagrams of these systems. Basing on recent experimental data and reflecting the essential role of doping a two-component scenario of cuprate superconductivity is now being developed[l-8]. It proposes the participation of two different electron subsystems in the basic superconductivity physics. One of them is of itinerant, and the other of doping-created defect nature. This is a coherently evolving and functioning hybridized symbiosis of antiferromagnetic and metallic components incorporating a hole-type itinerant band (O pXjy plus O pz and Cu dx2-y2 mixture) and a narrow distribution of defect (hole) induced states. This picture leaves freedom for the nature of the superconductivity micromechanism to remain under debate. However it becomes clear that the corresponding theories must exploit a doping-variable electronic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mihailovic, D., et al. (1996) Evidence for polaronic states in metallic YBa2Cu3O6.9 from ultrafast phonon Raman spectroscopy, Physica B 219/220, 142–144.

    Article  ADS  Google Scholar 

  2. Stevens, C.J. et al. (1997) Evidence for two-component high-Tc superconductivity in the femtosecond optical response, Phys. Rev. Lett. 78, 2212–2216.

    Article  ADS  Google Scholar 

  3. Mihailovic, D. and Müller, K.A. (1997) The two-component paradigma for superconductivity in cuprates, NATO ASI Materials Aspects of Hig-Tc Superconductivity, Kluwer, Academic Publishers, Dordrecht, p. 1–14.

    Google Scholar 

  4. Zhao, G. et al. (1998) Oxygen isotope effects in La2-x SrxCuO4 evidence for polaronic charge carriers and their condensation, J. Phys.: Cond. Matter 10, 9055–9066.

    Article  ADS  Google Scholar 

  5. Demsar, J. et al. (1999) Superconducting gaps, the pseudogap and pair fluctuations above Tc, Phys. Rev. Lett. 82, 4918–4921.

    Article  ADS  Google Scholar 

  6. Demsar, J. et al. (2001) Quasiparticle dynamics and gap structure in HgBa2Ca2Cu3Oγ+ð investigated with femtosecond spectroscopy, Phys. Rev. B 63, 054519 (1-5).

    Article  ADS  Google Scholar 

  7. Perali, A. et al. (2000) Two-gap model for underdoped cuprate superconductors, Phys. Rev. B 62, R9295–R9298.

    Article  ADS  Google Scholar 

  8. Müller, K.A. (2000) Recent experimental insights into HTSC materials, Physica C 341-348, 11–18.

    Article  Google Scholar 

  9. Emery, V.J. and Kivelson, S.A. (1993) Frustrated electronic phase separation and high-temperature superconductors, Physica C 209, 597–621.

    Article  ADS  Google Scholar 

  10. Service, R.F. (1999) Could charge stripes be a key to superconductivity, Science 283, 1106–1108.

    Article  Google Scholar 

  11. Salkola, M.J. et al. (1996) Metallic stripes in high-Tc superconductors, J. Supercond. 9, 401–406.

    Article  ADS  Google Scholar 

  12. Egami, T. (1996) Electron-lattice interaction in cuprates, J. Low Temp. 105, 791–800.

    Article  ADS  Google Scholar 

  13. Bianconi, A. et al. (1996) Stripe structure in the CuO2 plane of perovskite superconductors, Phys. Rev. B 54, 12018–12021.

    Google Scholar 

  14. Tranquada, J.M. (1997) Stripe correlations of spins and holes in cuprate superconductors, J. Supercond. 9, 397–399.

    Article  ADS  Google Scholar 

  15. Bianconi A. et al. (1998) Superconductivity of a striped phase at the atomic limit, Physica C 296, 269–280.

    Article  ADS  Google Scholar 

  16. Caprara, S. et al. (1999) Fermi surface and gap parameters in high-Tc superconductors: the stripe quantum critical point, Physica C 317-318, 230–233; (2000) Physica B 280, 180-196.

    Article  ADS  Google Scholar 

  17. Zaanen, J. (2000) Stripes defeat the Fermi liquid, Nature 404, 714–715.

    Article  Google Scholar 

  18. Suhl, H., Matthias, B.T. and Walker, L.R. (1959) Bardeen-Cooper-Schriffer theory of superconductivity in the case of overlapping bands, Phys. Rev. Lett. 3, 552–554.

    Article  ADS  MATH  Google Scholar 

  19. Moskalenko, V.A. (1976) Electromagnetic and kinetic properties of superconducting alloys with overlapping electron bands, Shtiinza, Kishinev (references therein).

    Google Scholar 

  20. Kondo, J. (1963) Superconductivity in transition metals, Progr. Theor. Phys. 29, 1–9.

    Article  ADS  Google Scholar 

  21. Kristoffel, N., Konsin, P. and Örd, T. (1994) Two-band model for high-temperature superconductivity, Rivista Nuovo Cimento 17, 1–41.

    Article  Google Scholar 

  22. Moskalenko, V.A., Palistrant, M.E. and Vakalyuk, V.M. (1991) High-temperature superconductivity on the basis of account of electron energy spectra peculiarities, Uspekhi Fiz. Nauk. 161, 155–178.

    Article  Google Scholar 

  23. Plakida, N. (1995) High-temperature superconductivity, Springer, Berlin.

    Book  Google Scholar 

  24. Kristoffel, N. (1998) Description of two-component high-Tc superconductors by an interband model, phys. stat. sol. b 210, 195–198.

    Article  ADS  Google Scholar 

  25. Gor’kov, L.P. and Sokol, A.V. (1987) Electron liquid stratification in novel superconductors, Pis’ma ŹETF 46, 333–336.

    ADS  Google Scholar 

  26. Tahir-Kheli, J. (1998) Interband pairing theory of superconductivity, Phys. Rev. B 58, 12307–12322.

    Google Scholar 

  27. Bussmann-Holder, A. et al. (2001) Theory of dynamic stripe induced superconductivity, J. Phys.: Cond. Matter 13, L169–174.

    Article  ADS  Google Scholar 

  28. Konsin, P., Kristoffel, N. and Örd, T. (1993) On the composition dependent isotope effect of HTSC in the two-band model, Ann. d. Physik 2, 279–283.

    Article  Google Scholar 

  29. Konsin, P., Kristoffel, N. and Rubin, P. (1996) Dependences of superconducting gaps on temperature and carrier concentration in a two-band model, Solid State Commun. 97, 567–572.

    Article  ADS  Google Scholar 

  30. Konsin, P., Kristoffel, N. and Sorkin, B. (1998) Application of the interband model to the dependence of superconducting Tc on carrier concentration, J. Phys.: Cond. Matter 10, 6533–6539.

    Article  ADS  Google Scholar 

  31. Örd, T. and Kristoffel, N. (1999) Paired carrier effective mass isotope effect in the two-band model, phys. stat. sol. b 216, 1049–1056.

    Article  ADS  Google Scholar 

  32. Örd, T. and Kristoffel, N. (2000) Two relaxation times and the high-Tc superconductivity two component scenario, Physica C 331, 13–17.

    Article  Google Scholar 

  33. De Wilde, Y. et al. (1998) Unusual strong-coupling effects in the tunneling spectroscopy of optimally doped Bi2Sr2CaCu2O8+ð, Phys. Rev. Lett. 80, 153–1

    Article  ADS  Google Scholar 

  34. Miyakawa, N. et al. (1998) Strong dependence of the superconducting gap on oxygen doping from tunneling measurements, Phys. Rev. Lett. 80, 157–160.

    Article  ADS  Google Scholar 

  35. Miyakawa, N. et al. (1999) Predominantly superconductive origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+ð from tunneling spetcroscopy, Phys. Rev. Lett. 83, 1018–1021.

    Article  ADS  Google Scholar 

  36. Renner, Ch. et al. (1998) Pseudogap precursor of the superconductivity gap in under-and overdoped Bi2Sr2CaCu2O8+ð, Phys. Rev. Lett. 80, 149–152.

    Article  ADS  Google Scholar 

  37. Timusk, T. and Statt, B. (1999) The pseudogap in high-temperature superconductors: experimental survey, Rep. Progr. Phys. 62, 61–115.

    Article  ADS  Google Scholar 

  38. Timusk, T. (1999) Infrared properties of exotic superconductors, Physica C 317-318, 18–29.

    Google Scholar 

  39. Norman, M.R. et al. (1997) Unusual dispersion and line-shape of the superconducting state spectra, Phys. Rev. Lett. 78, 2628–2631.

    Article  ADS  Google Scholar 

  40. Zhao, G. et al. (2001) Optical Cooper pair breaking spectroscopy of cuprate superconductors, Phys. Rev. B 63, 132507(1-4).

    Article  ADS  Google Scholar 

  41. Talion, J.L. and Loram, J.W. (2001) The doping dependence of T*-what is the real high-Tc phase diagram, Physica C 349, 53–58.

    Article  ADS  Google Scholar 

  42. Zasadzinski, J.F. et al. (2000) High energy secondary peak structure in tunneling spectra (hump) as possible magnetic pseudogap, Physica C 341-348, 867–870.

    Article  Google Scholar 

  43. Mouraschkine, A. (2000) Two energy gaps in cuprates: pairing and coherent gaps. The interpretation of tunneling and inelastic neutron scatterings measurements, Physica C, 341-348, 917–918.

    Article  Google Scholar 

  44. Sherman, E.Ya. and Ambrosch-Draxl, C. (2000) Multiband electron-phonon coupling in the cuprates: Raman scattering and charge fluctuations, Phys. Rev. B 62, 9713–9720.

    ADS  Google Scholar 

  45. Maksimov, E.G. et al. (1999) Comparative analysis of the optical spectra of YBa2Cu3O7, Solid State Commun. 112, 449–454.

    Article  ADS  Google Scholar 

  46. Kee, H.-Y. and Varma CM. (1998) Modeling of tunneling spectroscopy in high-Tc superconductors, Phys. Rev. B 58, 15035–15044.

    Google Scholar 

  47. Yusof, Z. et al. (1998) Spectral function of superconducting cuprates near optimal doping, Phys. Rev. B 58, 514–521.

    Article  ADS  Google Scholar 

  48. Chubukov, A.V. and Morr, D.K. (1998) Density of states and the energy gap in superconducting cuprates, Phys. Rev. Lett. 81, 4716–4719.

    Article  ADS  Google Scholar 

  49. Adrian, S.D. et al. (1997) Polarizability and single particle spectra of two-dimensional superconductors, Phys. Rev. B 56, 7878–7881.

    ADS  Google Scholar 

  50. Kristoffel, N. and Rubin, P. (2001) Two-band high-Tc superconductivity with a pseudogap, Physica C 356, 171–175.

    Article  ADS  Google Scholar 

  51. Kristoffel, N. and Rubin, P. (2001) Properties of high-temperature superconductors by a two-band model with the doping-dependent electron spectrum, Proc. Estonian Acad. Sci., Phys. Math. 50, 169–178.

    MATH  Google Scholar 

  52. Sinha, K.P. (1999) Some theoretical models for the pseudogap in HTSC, in: Studies of High-Temperature Superconductors, vol. 4, Nova Sei. Publ., pp. 131–146.

    Google Scholar 

  53. Batlogg, B. (1997) Cuprate superconductors: science beyond high-Tc, Solid State Commun. 107, 639–647.

    Article  ADS  Google Scholar 

  54. Norman, M.R. et al. (1998) Destruction of the Fermi surface in underdoped high-Tc superconductors, Nature 392, 157–16

    Article  ADS  Google Scholar 

  55. Ding, H. et al. (1996) Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors, Nature 382, 51–5

    Article  ADS  Google Scholar 

  56. Sadovskii M.V. (2001) Pseudogap in the high-temperature superconductors, Us-pekhi Fiz. Nauk 171, 539–564.

    Article  Google Scholar 

  57. Anshukova, N.V. et al. (1996) Hole localization, electronic structure and high-Tc superconductivity, Physica C 273, 151–156.

    Article  ADS  Google Scholar 

  58. Sherman, A. and Schreiber, M. (1998) Spectral and magnetic properties of the two-dimensional t-J model in the quantum disordered regime, Physica C 303, 257–272.

    Article  ADS  Google Scholar 

  59. Plakida, N.M. and Oudovenko, V.S. (1999) Electron spectrum and superconductivity in the t-J model at moderate doping, Phys. Rev. B 59, 11949–11961.

    Google Scholar 

  60. Alexandrov, A.S. and Edwards, P.P. (2000) High-Tc cuprates: a new electronic state of matter, Physica C 331, 97–112.

    Article  ADS  Google Scholar 

  61. Chubukov, A.V. and Morr, D.K. (1997) Electronic structure of underdoped cuprates, Phys. Repts. 288, 355–387.

    Article  ADS  Google Scholar 

  62. Zacher, M.G. et al. (2000) Stripes in doped antiferromagnets: single particle spectral weight, Phys. Rev. 85, 2585–2588.

    ADS  Google Scholar 

  63. Avramov, P.V. and Ovchinnikov, S.G. (2000) Strong electronic correlations effects in the X-ray and electronic spectra of HTSC, Fiz. Tverd. Tela 42, 770–790.

    Google Scholar 

  64. Di Castro, D. et al. (2000) Evidence for the strain critical point in high-Tc superconductors, Eur. Phys. J. B 18, 617–624.

    ADS  Google Scholar 

  65. Schwaller, P. et al. (2000) Doping-dependent electronic structure of cuprates studied using angle-scanned photoemission, Eur. Phys. J. B 18,115–225.

    Article  Google Scholar 

  66. Liang, W.Y. (1998) Are high-Tc cuprates unusual metals, J. Phys.: Cond. Matter 10, 11365–11384.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kristoffel, N., Rubin, P. (2002). Pair-Transfer Superconductivity on Doping Determined Bands and the Pseudogap. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics