Skip to main content

Electronic Thermal Conductivity of Partially-Gapped CDW Superconductors

  • Chapter
New Trends in Superconductivity

Part of the book series: NATO Science Series ((NAII,volume 67))

  • 307 Accesses

Abstract

Long ago it was theoretically shown that the electronic thermal conductivity κel of Bardeen-Cooper-Schrieffer (BCS) superconductors freezes out below superconducting critical temperature Tc [1, 2, 3]. On the contrary, the lattice thermal conductivity κph grows with decreasing temperature, T; the larger phonon mean free path stemming from the exponential drop of the quasiparticle number for T → 0. Therefore, the overall quantity κ(T) = κel(T) + κph(T) may be either monotonie or non-monotonie depending on the details of electron and phonon scattering mechanisms. Experimental data for low-Tc superconductors qualitatively agree with the theory [2, 3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maki, K. (1969) in R. D. Parks (ed.), Superconductivity Dekker, New York, Vol. 2, p. 1035–1105.

    Google Scholar 

  2. Geilikman, B. T. and Kresin, V. Z. (1974) Kinetic and Nonsteady-State Effects in Superconductors John Wiley and Sons, New York.

    Google Scholar 

  3. Geilikman, B. T. (1979) Studies in Low Temperature Physics Atomizdat, Moscow, in Russian.

    Google Scholar 

  4. Ginsberg, D. M. and Hebel, L. C. (1969) in R. D. Parks (ed.), Superconductivity Dekker, New York, Vol. 1, p. 193–257.

    Google Scholar 

  5. Ausloos, M. and Houssa, M. (1999) Supercond. Sci. Technol. 12, R103–R114.

    Article  ADS  Google Scholar 

  6. Mineev, V. P. and Samokhin, K. V. (1998) Intoduction into the Theory of Non-conventional Superconductors MFTI Publishing House, Moscow, in Russian.

    Google Scholar 

  7. Ghosh, H. (1998) Europhys. Lett. 43, 707–712.

    Article  ADS  Google Scholar 

  8. Maki, K. (2000) Physica C341-348, 1647–1650.

    ADS  Google Scholar 

  9. Timusk, T. and Statt, B. (1999) Rep. Prog. Phys. 62, 61–122.

    Article  ADS  Google Scholar 

  10. Ausloos, M., Gillet, F., Laurent, Ch., and Clippe, P. (1991) Z. Phys. B84, 13.

    Article  ADS  Google Scholar 

  11. Ausloos, M. and Dorbolo, S. (1999) Int. J. Mod. Phys. B12, 3216.

    ADS  Google Scholar 

  12. Loktev, V. M., Quick, R. M., and Sharapov, S. G. (2001) Phys. Rep. 349, 1–123.

    Article  ADS  MATH  Google Scholar 

  13. Talion, J. L. and Loram, J. W. (2001) Physica C349, 53–68.

    ADS  Google Scholar 

  14. Sadovskii, M. V. (2001) Usp. Fiz. Nauk 171, 539–564.

    Article  Google Scholar 

  15. Krasnov, V. M., Yurgens, A., Winkler, D., Delsing, P., and Claeson, T. (2000) Phys. Rev. Lett. 84, 5860–5863.

    Article  ADS  Google Scholar 

  16. Yurgens, A. A. (2000) Supercond. Sci. Technol. 13, R85–R100.

    Article  ADS  Google Scholar 

  17. Gabovich, A. M. (1992) Fiz. Nizk. Temp. 18, 693–704 [(1992) Sov. J. Low Temp. Phys. 18, 490-499].

    ADS  Google Scholar 

  18. Gabovich, A. M. and Voitenko, A. I. (1997) Phys. Rev. B55, 1081–1099.

    ADS  Google Scholar 

  19. Gabovich, A. M. and Voitenko, A. I. (2000) Fiz. Nizk. Temp. 26, 419–452 [(2000) Low Temp. Phys. 26, 305-330].

    Google Scholar 

  20. Gabovich, A. M., Voitenko, A. I., Annett, J. F., and Ausloos, M. (2001) Supercond. Sci. Technol. 14, R1–R27.

    Article  ADS  Google Scholar 

  21. Machida, K. (1983) J. Phys. Soc. Jpn. 52, 1333–1340.

    Article  ADS  Google Scholar 

  22. Bilbro, G. and McMillan, W. L. (1976) Phys. Rev. B14, 1887–1892.

    ADS  Google Scholar 

  23. Ambegaokar, V. (1963) in Brandeis Lectures in Theoretical Physics 1962, Astrophysics and Many-Body Problem, Vol. 2 W. A. Benjamin, New York, p. 321–438.

    Google Scholar 

  24. Ambegaokar, V. and Tewordt, L. (1964) Phys. Rev. 134, A805–A815.

    Article  ADS  Google Scholar 

  25. Ambegaokar, V. and Griffin, A. (1965) Phys. Rev. 137, A1151–A1167.

    Article  ADS  Google Scholar 

  26. Kadanoff, L. P. and Martin, P. C. (1961) Phys. Rev. 124, 670–697.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Maki, K. (1964) Prog. Theor. Phys. 31, 378–387.

    Article  MathSciNet  ADS  Google Scholar 

  28. Andreev, V. V. and Slyozov, V. V. (1964) Fiz. Met. Metalloved. 17, 477–480.

    Google Scholar 

  29. Chester, G. V. (1963) Rep. Prog. Phys. 26, 411.

    Article  ADS  Google Scholar 

  30. Izyumov, Yu. A. and Skryabin, Yu. N. (1974) Phys. Status Solidi B61, 9.

    Article  ADS  Google Scholar 

  31. Kopaev, Yu. V. (1975) Trudy Fiz. Inst. Akad. Nauk SSSR 86, 3–100.

    Google Scholar 

  32. Halperin, B. I. and Rice, T. M. (1968) Solid State Phys. 21, 115.

    Article  Google Scholar 

  33. Friend, R. H. and Jérome, D. (1979) J. Phys. C12, 1441–1477.

    ADS  Google Scholar 

  34. Grüner, G. (1988) Rev. Mod. Phys. 60, 1129.

    Article  ADS  Google Scholar 

  35. Krive, I. V., Rozhavskii, A. S., and Kulik, I. O. (1986) Fiz. Nizk. Temp. 12, 1123–1164 [(1986) Sov. J. Low Temp. Phys. 12, 635].

    Google Scholar 

  36. Abrikosov, A. A. (1987) Fundamentals of the Theory of Metals North-Holland, Amsterdam.

    Google Scholar 

  37. Gabovich, A. M. and Voitenko, A. I. (1997) Phys. Rev. B56, 7785–7788.

    ADS  Google Scholar 

  38. Gabovich, A. M. and Shpigel, A. S. (1983) J. Low Temp. Phys. 51, 581–599.

    Article  ADS  Google Scholar 

  39. Zittartz, J. (1967) Phys. Rev. 164, 575–582.

    Article  ADS  Google Scholar 

  40. Gabovich, A. M., Pashitskii, E. A., and Shpigel, A. S. (1976) Fiz. Tverd. Tela 18, 3279–3287 [(1976) Sov. Phys. Solid State 18, 1911].

    Google Scholar 

  41. Gabovich, A. M. and Voitenko, A. I. (2000) Physica C239, 198–230.

    ADS  Google Scholar 

  42. Barash, Yu. S. and Svidzinsky, A. A. (1998) Phys. Rev. B58, 6476–6492.

    ADS  Google Scholar 

  43. Anselm, A. I. (1978) Introduction into the semiconductor theory Nauka, Moscow, in Russian.

    Google Scholar 

  44. Kasatkin, A. L. (1983) Fiz. Tverd. Tela 25, 3091–3096.

    Google Scholar 

  45. Artemenko, S. N. and Volkov, A. F. (1984) Zh. Éksp. Teor. Fiz. 87, 691–701 [(1984) Sov. Phys. JETP 60, 395-401].

    ADS  Google Scholar 

  46. Artemenko, S. N. and Wonneberger, W. (1996) J. Phys. I (Paris) 6, 2079.

    Google Scholar 

  47. Gorbatsevich, A. A. and Kopaev, Yu. V. (1987) in V. L. Ginzburg (ed.), Superconductivity, Superdiamagnetism, Superfluidity Mir, Moscow, p. 175–241.

    Google Scholar 

  48. Zittartz, J. (1968) Phys. Rev. 165, 612–617.

    Article  ADS  Google Scholar 

  49. Maki, K. and Nakanishi, K. (1971) J. Low Temp. Phys. 5, 55.

    Article  ADS  Google Scholar 

  50. Idlis, B. G. and Kopaev, Yu. V. (1978) Fiz. Tverd. Tela 20, 1383–1393.

    Google Scholar 

  51. Kopaev, Yu. V., Menyailenko, V. V., and Molotkov, S. N. (1979) Zh. Éksp. Teor. Fiz. 77, 352–364.

    Google Scholar 

  52. Gabovich, A. M. and Shpigel, A. S. (1984) J. Phys. F14, 3031–3039.

    Article  ADS  Google Scholar 

  53. Gabovich, A. M., Gerber, A. S., and Shpigel, A. S. (1987) Phys. Status Solidi B141, 575–587.

    Article  ADS  Google Scholar 

  54. MacLaughlin, D. E. (1976) Solid State Phys. 31, 1–69.

    Article  Google Scholar 

  55. Hebel, L. C. and Slichter, C. P. (1959) Phys. Rev. 113, 1504–1519.

    Article  ADS  Google Scholar 

  56. Fibich, M. (1965) Phys. Rev. Lett. 14, 561–564.

    Article  ADS  MATH  Google Scholar 

  57. Scalapino, D. J., Schrieffer, J. R., and Wilkins, J. W. (1966) Phys. Rev. 148, 263–279.

    Article  ADS  Google Scholar 

  58. Allen, P. B. and Rainer, D. (1991) Nature 349, 396–398.

    Article  ADS  Google Scholar 

  59. Kuroda, Y. and Varma, C. M. (1990) Phys. Rev. B42, 8619–8622.

    ADS  Google Scholar 

  60. Dolgov, O. V., Golubov, A. A., and Koshelev, A. E. (1989) Solid State Commun. 72, 81–83.

    Article  ADS  Google Scholar 

  61. Coffey, L. (1990) Phys. Rev. Lett. 64, 1071.

    Article  ADS  Google Scholar 

  62. Scalapino, D. J. (1995) Phys. Rep. 250, 329–365.

    Article  ADS  Google Scholar 

  63. Annett, J. F., Goldenfeld, N. D., and Leggett, A. J. (1996) in D. M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors V World Scientific, River Ridge, N J, p. 375.

    Chapter  Google Scholar 

  64. Gabovich, A. M. and Voitenko, A. I. (1999) Phys. Rev. B60, 7465–7472.

    ADS  Google Scholar 

  65. Klemm, R. A. (1999) in M. Ausloos and S. Kruchinin (eds.), Symmetry and Pairing in Superconductors Kluwer Academic, Dordrecht, p. 161–172.

    Chapter  Google Scholar 

  66. Popoviciu, C. P. and Cohn, J. L. (1997) Phys. Rev. B55, 3155–3162.

    ADS  Google Scholar 

  67. Zeini, B., Freimuth, A., Büchner, B., Galffy, M., Gross, R., Kampf, A. P., Kläser, M., Müller-Vogt, G., and Winkler, L. (2001) Eur. Phys. J. B20, 189–208.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ausloos, M., Gabovich, A.M., Voitenko, A.I., Pekala, M. (2002). Electronic Thermal Conductivity of Partially-Gapped CDW Superconductors. In: Annett, J.F., Kruchinin, S. (eds) New Trends in Superconductivity. NATO Science Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0544-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0544-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0705-7

  • Online ISBN: 978-94-010-0544-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics