Skip to main content

Nonlinear Impurity Modes in Homogeneous and Periodic Media

  • Chapter
Nonlinearity and Disorder: Theory and Applications

Part of the book series: NATO Science Series ((NAII,volume 45))

  • 262 Accesses

Abstract

We analyze the existence and stability of nonlinear localized waves in a system described by the Kronig-Penney model with a nonlinear impurity. First, we study the properties of such waves in a homogeneous medium, and then analyze new effects introduced by step-like periodicity of the medium parameters. In particular, we demonstrate the existence of a novel type of stable nonlinear band-gap localized states, and also reveal an important physical mechanism of the oscillatory wave instabilities of localized modes associated with the band-gap wave resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988).

    Google Scholar 

  2. See, e.g., Confined Electrons and Photons: New Physics and Applications, Eds. E. Burstein and C. Weisbuch (Plenum Press, New York, 1995).

    Google Scholar 

  3. F. Delyon, Y.-E. Lévy, and B. Souillard, Phys. Rev. Lett. 57, 2010 (1986); see also a review paper D. Hennig and G. P. Tsironis, Phys. Rep. 307, 333 (1999).

    Article  Google Scholar 

  4. W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987); D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989); N. Akozbek and S. John, Phys. Rev. E 57, 2287 (1998).

    Article  Google Scholar 

  5. H. Kogelnik and C. V. Shank, J. Appl. Phys 42, 2327 (1972); H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).

    Article  Google Scholar 

  6. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).

    Article  Google Scholar 

  7. B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).

    Article  Google Scholar 

  8. I. V. Barashenkov, D. E. Pelinovsky, and E. V. Zemlyanaya, Phys. Rev. Lett. 80, 5117 (1998); see also A. De Rossi, C. Conti, and S. Trillo, Phys. Rev. Lett. 81, 85 (1998).

    Article  Google Scholar 

  9. Using the optics terminology, we notice that such two types of localized states are the guided waves corresponding to the conventional waveguiding, due to the total internal reflection, and to the band-gap states, due to the Bragg-type reflection.

    Google Scholar 

  10. See, e.g., Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Zh. Éksp. Teor. Fiz. 93, 5968 (1987) [Sov. Phys. JETP 66, 545 (1987)]; Phys. Lett. A 125, 35 (1987); and references therein.

    Google Scholar 

  11. See, e.g., the review papers: G. I. Stegeman, C. T. Seaton, W. H. Hetherington, A. D. Boardman, and P. Egan, in Electromagnetic Surface Excitations, Eds. R. F. Wallis and G. I. Stegeman (Springer-Verlag, Berlin, 1986); F. Lederer, U. Langbein, and H. E. Ponath, in Lasers and Their Applications, Ed. A.Y. Spassov (World Scientific, Singapore, 1987); and references therein.

    Google Scholar 

  12. Transfer matrix approach for optical waves was developed by F. Abeles, Ann. de Physique, 5 596, 706 (1950); see also Ref. [13], where notations correspond to Eq. (4).

    MathSciNet  MATH  Google Scholar 

  13. A. A. Sukhorukov, Yu. S. Kivshar, O. Bang, and C. M. Soukoulis, Phys. Rev. E 63, 016615 (2001).

    Google Scholar 

  14. N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 16, 1020 (1973) [Radiophys. Quantum Electron. 16, 783 (1973)]; see also a recent review paper, Yu. S. Kivshar and A. A. Sukhorukov, in Spatial Optical Solitons, Eds. W. Torruellas and S. Trillo (Springer-Verlag, New York, 2001), pp. 209-243.

    Google Scholar 

  15. J. Hader, P. Thomas, and S. W. Koch, Progr. Quantum Electron. 22, 123 (1998); O. M. Bulashenko, V. A. Kochelap, and L. L. Bonilla, Phys. Rev. B 54, 1537 (1996); Q. Tian and C. Wu, Phys. Lett. A 262, 83 (1999); F. V. Kusmartsev and H. S. Dhillon, Phys. Rev. B 60, 6208 (1999).

    Article  Google Scholar 

  16. See, e.g., Y. Y. Zhu and N. B. Ming, Opt. Quantum. Electron. 31, 1093 (1999), and references therein.

    Article  Google Scholar 

  17. See, e.g., Qiming Li, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 53, 15577 (1996); A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998); O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).

    Article  Google Scholar 

  18. See, e.g., M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).

    Article  Google Scholar 

  19. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285, 1537 (1999); B. J. Eggleton, P. S. Westbrook, R. S. Windeier, S. Spälter, and T. A. Strasser, Opt. Lett. 24, 1460 (1999).

    Article  Google Scholar 

  20. O. Zobay, S. Pötting, P. Meystre, and E. M. Wright, Phys. Rev. A 59, 643 (1999); F. Barra, P. Gaspard, and S. Rica, Phys. Rev. E 61, 5852 (2000); K.-P. Marzlin and W. Zhang, Eur. Phys. J. D 12, 241 (2000); J. C. Bronski, L. D. Carr, B. De-coninck, and J. N. Kutz, Phys. Rev. Lett. 86, 1402 (2001); J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow, Phys. Rev. E 63, 036612 (2001); A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sukhorukov, A.A., Kivshar, Y.S. (2001). Nonlinear Impurity Modes in Homogeneous and Periodic Media. In: Abdullaev, F., Bang, O., Sørensen, M.P. (eds) Nonlinearity and Disorder: Theory and Applications. NATO Science Series, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0542-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0542-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0192-5

  • Online ISBN: 978-94-010-0542-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics