Skip to main content

Catching a Falling Drop by NMR: Correlation of Position and Velocity

  • Chapter
  • 878 Accesses

Part of the book series: NATO Science Series ((NAII,volume 76))

Abstract

The spin density profile and the statistical probability density of displacements of a drop free falling through a vertical-bore magnet was measured in all three spatial directions, both separated and in a correlated way employing NMR imaging methods and in particular pulsed field gradient (PFG) NMR techniques. The falling motion was monitored by double encoding of vertical position at successive times separated by Δ within a single two-dimensional (2D) PFG NMR experiment i.e. position exchange spectroscopy (POXSY). 2D images along the cross-section of the drop, mapping the z- velocity component in each pixel, verifies the constant z-velocity throughout the total drop volume. 2D images encoded with transverse velocities contain structures characteristic of velocity distributions which can be attributed either to vortex-motions inside the drop or coherent oscillations of the whole drop. The fact that the net transverse velocity over the cross-section is zero proves that no net motions of the drop itself contribute to the results. The essential challenge has been to implement one- and multi-dimensional NMR imaging techniques within the residence time of the falling drop inside the resonator of about 10 ms. The solution was to accumulate information from many drops by triggering every single acquisition to another falling drop. The regularity and uniformity of the dripping process was clearly demonstrated, which was the absolute requirement for signal accumulation as well as for multidimensional NMR experiments. Given that the experimentally determined velocity profile of the drop by NMR imaging methods was reproducible and reliable, the basis for mapping motion of and inside a drop in a direct, three-dimensional and non-invasive way by NMR flow imaging methods is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen I., Brenner M. P., Eggers J. and Nagel S. R., (1990) Phys. Rev. Lett. 83, 1147.

    Article  Google Scholar 

  2. Brenner M. P., Eggers J., Joseph K., Nagel S. R., Shi X. D., (1997) phys. Fluid 9. 1573.

    Article  CAS  Google Scholar 

  3. Donelly R. J., Glaberson W., (1966) Proc. R. Soc. London Ser. A 290 547.

    Article  Google Scholar 

  4. SFB540, Modellgestützte experimentelle Analyse kinetischer Phänomene in mehrphasigen fluiden Reaktionssytemen, 01.07.1999-30.06.2002.

    Google Scholar 

  5. Hauser E. A., Edgerton H. E., Tucker W. B., (1936) J. phys.Chem. 40, 973.

    Article  CAS  Google Scholar 

  6. Edgerton H. E., Hauser E. A., Tucker W. B., (1941) J. Phys.Chem. 41, 1017.

    Article  Google Scholar 

  7. Hunter J. C., Collins M. W., (1990) Int. J. Optoelectronics 5, 405.

    Google Scholar 

  8. Dudderar T. D., Meynart R., Simpkins P. G., (1988) Optics Lasers Engng. 9, 211.

    Article  Google Scholar 

  9. Keane R. D., Adrian R. J., (1990) Meas, Sci. Technol. 1. 1202.

    Article  Google Scholar 

  10. Kärger J., Pfeifer H., Heink W., (1988) Adv. Magn, Reson. 12, 1.

    Google Scholar 

  11. Callaghan P. T., (1991) principles of NMR Microscopy, Oxford: Clarendon Press.

    Google Scholar 

  12. Blümich B., (2000) NMR Imaging for Materials, Oxford Science Publications.

    Google Scholar 

  13. Lauterbur P.C., (1973) Mature 242, 190.

    Article  CAS  Google Scholar 

  14. Mansfield P., Grannell P. K., (1975) phys. Rev. B 12, 3618.

    Article  CAS  Google Scholar 

  15. Edelstein W. A., Hutchinson J. M. S., Johnson G., Redpath T., (1980) Phys. Med. Biol. 25, 751.

    Article  CAS  Google Scholar 

  16. Han S., Stapf S., Blümich B., (2000) J. Magn. Reson, 146, 169.

    Article  CAS  Google Scholar 

  17. Han S., Blümich B., (2000) Appl. Magn. Reson. 18.101.

    Article  CAS  Google Scholar 

  18. Han S., Stapf S., Blümich B., (2001) Phys. Rev. Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Han, SI., Stapf, S., Blümich, B. (2002). Catching a Falling Drop by NMR: Correlation of Position and Velocity. In: Fraissard, J., Lapina, O. (eds) Magnetic Resonance in Colloid and Interface Science. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0534-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0534-0_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0787-3

  • Online ISBN: 978-94-010-0534-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics