Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 76))

  • 876 Accesses

Abstract

Slow translational motion is conventionally probed by magnetic gradient fields which are manipulated in time so that different moments of the gradient modulation function are either adjusted to zero or stepped through a range of values for subsequent Fourier transformation to obtain the displacement propagators, and probability densities of motional parameters like position, velocity and acceleration. It is shown, that this formalism is not restricted to time-dependent linear fields to probe translational motion, but can be applied to time-dependent offset fields in general with arbitrary parameter dependences including angular dependences to probe rotational motion. Three cases are considered in particular: a linear space dependence, a quadratic space dependence, and an angular dependence of the offset field following the second Legendre polynomial. Experimental examples concern position exchange NMR of laminar flow through a narrowing pipe and velocity exchange NMR for a hollow fiber filtration module with pulsed linear fields, laminar flow through a pipe in a time-invariant parabolic field profile, and 13C solid-state exchange of dimethyl sulfone in a homogeneous polarization field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stejskal, E.O., Tanner, J.E. (1965) Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient, J. Chem. Phys. 42, 288.

    Article  CAS  Google Scholar 

  2. Kärger, J., Heink, W. (1983) The Propagator Representation of Molecular Transport in Microporous Crystallites, J. Magn. Reson. 51, 1.

    Google Scholar 

  3. Callaghan, P.T. (1993) Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford,.

    Google Scholar 

  4. Pope, J. M., Yao, S. (1993) Quantitative NMR Imaging of Flow, Concepts Magn. Reson. 5,281.

    Article  CAS  Google Scholar 

  5. Seymour, J.D, Maneval, J.E, McCarthy, K.L., Powell, R.L., McCarthy, M.J. (1995) Rheological Characterization of Fluids Using NMR Velocity Spectrum Measurements, J. Texture Studies 26, 89–101.

    Article  Google Scholar 

  6. Callaghan, P.T, Codd, S.L, Seymour, J.D. (1999) Spatial Coherence Phenomena Arising From Translational Spin Motion in Gradient Spin Echo Experiments, Concepts Magn. Reson. 11, 181.

    Article  CAS  Google Scholar 

  7. Fukushima, E. (1999) Nuclear Magnetic Resonance as a Tool to Study Flow, Annu. Rev. Fluid Mech. 31, 95.

    Article  Google Scholar 

  8. Hahn, E. L. (1950) Spin Echoes, Phys. Rev. 80, 580.

    Article  Google Scholar 

  9. Carr, H.Y, Purcell, E.M. (1954) Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments, Phys. Rev. 94, 630.

    Article  CAS  Google Scholar 

  10. Blümich, B.(2000) NMR imaging of materials, Oxford Science Publications, Oxford,.

    Google Scholar 

  11. Han, S., Blümich, B. (2000) Two-Dimensional Representation of Position, Velocity and Acceleration by PFG-NMR, Appl. Magn. Reson. 18, 101.

    Article  CAS  Google Scholar 

  12. Wefing, S., Spiess, H.W. (1988) Two-Dimensional Exchange NMR of Powder Samples. I Two-time distribution functions, J. Chem. Phys. 89, 1219.

    Article  CAS  Google Scholar 

  13. Schmidt-Rohr, K., Spiess, H.W. (1994) Multidimensional Solid-State NMR and Polymers, Academic Press, London.

    Google Scholar 

  14. NMR-MOUSE is a registered trademark of RWTH Aachen.

    Google Scholar 

  15. R. Eymael (2001) Methoden und Anwendungen der Oberflächen-NMR: Die NMR-MOUSE, Dissertation, RWTH, Aachen.

    Google Scholar 

  16. Han, S, Stapf, S, Blümich (2000) Two-dimensional PFG-NMR for encoding correlations of position, velocity and acceleration in fluid transport, J. Magn. Reson. 146, 169.

    Article  CAS  Google Scholar 

  17. Callaghan, P.T., Manz, B. (1994) Velocity Exchange Spectroscopy, J. Magn. Reson. A 106, 260.

    Article  CAS  Google Scholar 

  18. Packer, K.J., Stapf, S., Tessier, J.J., Damion, R.A. (1998) The Characterisation of Fluid Transport in Porous Solids by Means of Pulsed Magnetic Field Gradient NMR, Magn. Reson. Imag. 16, 463.

    Article  CAS  Google Scholar 

  19. Stapf, S, Packer, K.J., Graham, R.G., Thovert, J.-F, Adler, P.M. (1998), Spatial Correlations and Dispersion for Fluid Transport through Packed Glass Beads, Phys. Rev. E 58, 6206.

    Article  CAS  Google Scholar 

  20. Blümich, B., Callaghan, P.T., Damion, R., Han, S., Khrapitchev, A., Packer, K., Stapf, S. submitted Two-dimensional NMR of velocity exchange: VEXSY and SERPENT

    Google Scholar 

  21. Han, S., Stapf S., Blümich, B. in press Fluid transport and filtration in a hemodialyzer module by 2D PFG NMR, Magn. Reson. Imag..

    Google Scholar 

  22. Heine, C. (2001) NMR von rotatorischer und translatorischer Dynamik, Dissertation, RWTH, Aachen.

    Google Scholar 

  23. Schmidt-Rohr, K., Spiess, H.W. (1991) Nature of Nonexponential Loss of Correlation above the Glass Transition, Phys. Rev. Lett. 66, 3020.

    Article  CAS  Google Scholar 

  24. Favre, D.E., Schaefer, D., Chmelka, B.F. (1998) Direct Determination of Motional Correlation Times by 1D MAS and 2D Exchange NMR Techniques, J. Magn. Reson. 134,261.

    Article  CAS  Google Scholar 

  25. Hagemeyer, A., Brombacher, L., Schmidt-Rohr, K., Spiess, H.W. (1990) Reconstruction of Angular Distribution from Two-Dimensional NMR Spectra of Powder Samples, Chem. Phys. Lett. 167, 83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blümich, B., Han, S., Heine, C., Eymael, R., Bertmer, M., Stapf, S. (2002). Analysis of Slow Motion by Multidimensional NMR. In: Fraissard, J., Lapina, O. (eds) Magnetic Resonance in Colloid and Interface Science. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0534-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0534-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0787-3

  • Online ISBN: 978-94-010-0534-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics