Analysis of Slow Motion by Multidimensional NMR

  • B. Blümich
  • S. Han
  • C. Heine
  • R. Eymael
  • M. Bertmer
  • S. Stapf
Part of the NATO Science Series book series (NAII, volume 76)


Slow translational motion is conventionally probed by magnetic gradient fields which are manipulated in time so that different moments of the gradient modulation function are either adjusted to zero or stepped through a range of values for subsequent Fourier transformation to obtain the displacement propagators, and probability densities of motional parameters like position, velocity and acceleration. It is shown, that this formalism is not restricted to time-dependent linear fields to probe translational motion, but can be applied to time-dependent offset fields in general with arbitrary parameter dependences including angular dependences to probe rotational motion. Three cases are considered in particular: a linear space dependence, a quadratic space dependence, and an angular dependence of the offset field following the second Legendre polynomial. Experimental examples concern position exchange NMR of laminar flow through a narrowing pipe and velocity exchange NMR for a hollow fiber filtration module with pulsed linear fields, laminar flow through a pipe in a time-invariant parabolic field profile, and 13C solid-state exchange of dimethyl sulfone in a homogeneous polarization field.


Translational Motion Transverse Magnetization Quadratic Field Exchange Spectrum Pulse Gradient Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Stejskal, E.O., Tanner, J.E. (1965) Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient, J. Chem. Phys. 42, 288.CrossRefGoogle Scholar
  2. 2).
    Kärger, J., Heink, W. (1983) The Propagator Representation of Molecular Transport in Microporous Crystallites, J. Magn. Reson. 51, 1.Google Scholar
  3. 3).
    Callaghan, P.T. (1993) Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford,.Google Scholar
  4. 4).
    Pope, J. M., Yao, S. (1993) Quantitative NMR Imaging of Flow, Concepts Magn. Reson. 5,281.CrossRefGoogle Scholar
  5. 5).
    Seymour, J.D, Maneval, J.E, McCarthy, K.L., Powell, R.L., McCarthy, M.J. (1995) Rheological Characterization of Fluids Using NMR Velocity Spectrum Measurements, J. Texture Studies 26, 89–101.CrossRefGoogle Scholar
  6. 6).
    Callaghan, P.T, Codd, S.L, Seymour, J.D. (1999) Spatial Coherence Phenomena Arising From Translational Spin Motion in Gradient Spin Echo Experiments, Concepts Magn. Reson. 11, 181.CrossRefGoogle Scholar
  7. 7).
    Fukushima, E. (1999) Nuclear Magnetic Resonance as a Tool to Study Flow, Annu. Rev. Fluid Mech. 31, 95.CrossRefGoogle Scholar
  8. 8).
    Hahn, E. L. (1950) Spin Echoes, Phys. Rev. 80, 580.CrossRefGoogle Scholar
  9. 9).
    Carr, H.Y, Purcell, E.M. (1954) Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments, Phys. Rev. 94, 630.CrossRefGoogle Scholar
  10. 10).
    Blümich, B.(2000) NMR imaging of materials, Oxford Science Publications, Oxford,.Google Scholar
  11. 11).
    Han, S., Blümich, B. (2000) Two-Dimensional Representation of Position, Velocity and Acceleration by PFG-NMR, Appl. Magn. Reson. 18, 101.CrossRefGoogle Scholar
  12. 12).
    Wefing, S., Spiess, H.W. (1988) Two-Dimensional Exchange NMR of Powder Samples. I Two-time distribution functions, J. Chem. Phys. 89, 1219.CrossRefGoogle Scholar
  13. 13).
    Schmidt-Rohr, K., Spiess, H.W. (1994) Multidimensional Solid-State NMR and Polymers, Academic Press, London.Google Scholar
  14. 14).
    NMR-MOUSE is a registered trademark of RWTH Aachen.Google Scholar
  15. 15).
    R. Eymael (2001) Methoden und Anwendungen der Oberflächen-NMR: Die NMR-MOUSE, Dissertation, RWTH, Aachen.Google Scholar
  16. 16).
    Han, S, Stapf, S, Blümich (2000) Two-dimensional PFG-NMR for encoding correlations of position, velocity and acceleration in fluid transport, J. Magn. Reson. 146, 169.CrossRefGoogle Scholar
  17. 17).
    Callaghan, P.T., Manz, B. (1994) Velocity Exchange Spectroscopy, J. Magn. Reson. A 106, 260.CrossRefGoogle Scholar
  18. 18).
    Packer, K.J., Stapf, S., Tessier, J.J., Damion, R.A. (1998) The Characterisation of Fluid Transport in Porous Solids by Means of Pulsed Magnetic Field Gradient NMR, Magn. Reson. Imag. 16, 463.CrossRefGoogle Scholar
  19. 19).
    Stapf, S, Packer, K.J., Graham, R.G., Thovert, J.-F, Adler, P.M. (1998), Spatial Correlations and Dispersion for Fluid Transport through Packed Glass Beads, Phys. Rev. E 58, 6206.CrossRefGoogle Scholar
  20. 20).
    Blümich, B., Callaghan, P.T., Damion, R., Han, S., Khrapitchev, A., Packer, K., Stapf, S. submitted Two-dimensional NMR of velocity exchange: VEXSY and SERPENTGoogle Scholar
  21. 21).
    Han, S., Stapf S., Blümich, B. in press Fluid transport and filtration in a hemodialyzer module by 2D PFG NMR, Magn. Reson. Imag..Google Scholar
  22. 22).
    Heine, C. (2001) NMR von rotatorischer und translatorischer Dynamik, Dissertation, RWTH, Aachen.Google Scholar
  23. 23).
    Schmidt-Rohr, K., Spiess, H.W. (1991) Nature of Nonexponential Loss of Correlation above the Glass Transition, Phys. Rev. Lett. 66, 3020.CrossRefGoogle Scholar
  24. 24).
    Favre, D.E., Schaefer, D., Chmelka, B.F. (1998) Direct Determination of Motional Correlation Times by 1D MAS and 2D Exchange NMR Techniques, J. Magn. Reson. 134,261.CrossRefGoogle Scholar
  25. 25).
    Hagemeyer, A., Brombacher, L., Schmidt-Rohr, K., Spiess, H.W. (1990) Reconstruction of Angular Distribution from Two-Dimensional NMR Spectra of Powder Samples, Chem. Phys. Lett. 167, 83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • B. Blümich
    • 1
  • S. Han
    • 1
  • C. Heine
    • 1
  • R. Eymael
    • 1
  • M. Bertmer
    • 1
  • S. Stapf
    • 1
  1. 1.Institute for Technical Chemistry and Macromolecular Chemistry RWTHAachenGermany

Personalised recommendations