Quantum In-Plane Magnetoresistance in 2D Electron Systems

  • J. S. Meyer
  • V. I. Fal’ko
  • B. L. Altshuler
Part of the NATO Science Series book series (NAII, volume 72)


Studies of low-dimensional electron systems subject to an in-plane magnetic field have come to the focus of intense attention recently. In several experiments the influence of an in-plane magnetic field on two- and one-dimensional electrons in semiconductor heterostructures [1, 2] as well as in lateral quantum dot devices [3] has been investigated. The use of the fairly unconventional in-plane field geometry aimed at achieving a stronger magnetic field influence on the 2D electron spin, thus, compensating the dominance of orbital effects in most of the known semiconductor materials. Then, by manipulating the field-induced spin polarization, one may extract information about the ground state properties of interacting electrons. At low temperatures—i.e., in the regime where electron- electron interactions open the possibility of a metal-insulator transition or the ferromagnetic Stoner instability—interaction effects coexist with single-particle interference effects. The aim of this article is to provide a theoretical overview of possible influences of an in-plane magnetic field on single-particle quantum transport phenomena in semiconductor heterostructures, quantum wells, and lateral dots.


Magnetic Impurity Zeeman Splitting Weak Localization Impurity Spin Levy Flight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. Mace, and D. Ritchie, Phys. Rev. Lett. 77, 135(1996).ADSCrossRefGoogle Scholar
  3. 3.
    J. A. Folk, S. R. Patel, K. M. Birnbaum, C. M. Marcus, C. I. Duruoz, and J. S. Harris, Phys. Rev. Lett. 86, 2102(2001).ADSCrossRefGoogle Scholar
  4. 4.
    B. L. Altshuler, P. A. Lee, and R. A. Webb, Mesoscopic Phenomena in Solids, North-Holland, Amsterdam, Oxford, New York, Tokio (1991).Google Scholar
  5. 5.
    Mesoscopic Quantum Physics (Les Houches Session LXI), Elsevier, North-Holland, Amsterdam (1995).Google Scholar
  6. 6.
    Mesoscopic Electron Transport, Kluwer, Dordrecht (1997).Google Scholar
  7. 7.
    B. D. Simons and A. Altland, in Theoretical Physics at the End of the XXth Century, Banff, edited by, Springer (2001).Google Scholar
  8. 8.
    L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’nitskii, JETP Lett. 30, 228 (1979).ADSGoogle Scholar
  9. 9.
    B. L. Altshuler and D. E. Khmel’nitskii, JETP Lett. 42, 291 (1985).Google Scholar
  10. 10.
    P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibovitz, Phys. Rev. Lett. 54, 2696 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Fal’ko, J. Phys. Cond. Matt. 2, 3797 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Fal’ko, Phys. Rev. B 50, 17406 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    J. S. Meyer, A. Altland, and B. L. Altshuler. preprint cond-mat/0105623.Google Scholar
  16. 16.
    V. I. Fal’ko and T. Jungwirth, Phys. Rev. B 65, 81306 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    L. Smrcka, P. Vasek, J. Kolacek, T. Jungwirth, and M. Cukr, Phys. Rev. B 51, 18011 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    J. M. Heisz and E. Zaremba, Phys. Rev. B 53, 13594 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    I. Kukushkin, V. I. Fal’ko, K. von Klitzing, D. Heitmann, and K. Ploog, JETP Lett. 53, 334 (1991).ADSGoogle Scholar
  20. 20.
    V. Kirpichev, I. Kukushkin, V. Timofeev, and V. I. Fal’ko, JETP Lett. 51,436 (1990).ADSGoogle Scholar
  21. 21.
    B. L. Altshuler and A. G. Aronov, JETP Lett. 33,499 (1981).ADSGoogle Scholar
  22. 22.
    V. K. Dugaev and D. E. Khmel’nitskii, Sov. Phys. JETP 59, 1038 (1984).Google Scholar
  23. 23.
    C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M. Leadbeater, V. I. Fal’ko, and C. J. Lambert, Phys. Rev. Lett. 81, 1274 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    M. Dyakonov and V. Perel, Sov. Phys. JETP 33, 1053 (1971).ADSGoogle Scholar
  26. 26.
    S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    S. Iordanskii, Y. Lyanda-Geller, and G. E. Pikus, JETP Lett. 60, 207 (1994).ADSGoogle Scholar
  28. 28.
    Y Lyanda-Geller and A. D. Mirlin, Phys. Rev. Lett. 72, 1894 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    I. L. Aleiner and V. I. Fal’ko, Phys. Rev. Lett. 87, 256801 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    A. G. Huibers, M. Switkes, C. M. Marcus, K. Capman, and A. C. Gossard, Phys. Rev. Lett. 81, 200(1998).ADSCrossRefGoogle Scholar
  32. 32.
    A. G. Huibers, J. A. Folk, S. R. Patel, C. M. Marcus, C. I. Duruoz, and J. S. Harris, Phys. Rev. Lett. 83, 5090 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    G. Bergmann, Phys. Rep. 101, 1 (1982).Google Scholar
  34. 34.
    V. I. Fal’ko, JETP Lett. 53, 342 (1991).ADSGoogle Scholar
  35. 35.
    V. Chandrasekhar and et al, Phys. Rev. B 42, 6823 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    A. A. Bobkov, V. I. Fal’ko, and D. E. Khmel’nitskii, Sov. Phys. JETP 71, 393 (1990).Google Scholar
  37. 37.
    V. I. Fal’ko, J. Phys. Cond. Matt. 4, 3943 (1992).ADSCrossRefGoogle Scholar
  38. 38.
    A. Benoit and et al, Superlatt. Microstr. 11, 313 (1992).ADSCrossRefGoogle Scholar
  39. 39.
    A. K. Geim, S. V. Dubonos, and I. Y Antonova, JETP Lett. 52, 247 (1990).ADSGoogle Scholar
  40. 40.
    K. B. Efetov, Phys. Rev. Lett. 74, 2299 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    J. S. Langer and T. Neal, Phys. Rev. Lett. 16, 984 (1966).ADSCrossRefGoogle Scholar
  42. 42.
    G. Bergmann, Phys. Rep. 107, 2 (1984).ADSCrossRefGoogle Scholar
  43. 43.
    M. Robnik and M. V. Berry, J. Phys. A 19, 669 (1986).MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    J. S. Meyer. Mesoscopic phenomena driven by parallel magnetic fields. PhD thesis, 2001.Google Scholar
  45. 45.
    J. P. Bouchaut and A. Georges, Phys. Rep. 195, 127 (1990).MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    A. B. Pippard, Magnetoresistance in Metals, Cambridge University Press, New York (1989).Google Scholar
  47. 47.
    H. Mathur and H. U. Baranger, Phys. Rev. B 64, 235325 (2001).ADSCrossRefGoogle Scholar
  48. 48.
    R. Serota and et al, Phys. Rev. B, 5031 (1987).Google Scholar
  49. 49.
    Z. Tesanovich and et al, Phys. Rev. Lett. 57, 2760 (1986).ADSCrossRefGoogle Scholar
  50. 50.
    K. Nikolic and A. MacKinnon, Phys. Rev. B, 11008 (1994).Google Scholar
  51. 51.
    J. T. Chalker and A. Macedo, Phys. Rev. Lett. 71, 3693 (1993).ADSCrossRefGoogle Scholar
  52. 52.
    J.-L. Pichard and et al, J. Phys. (Paris) 51, 587 (1990).CrossRefGoogle Scholar
  53. 53.
    K. Frahm, Phys. Rev. Lett. 74, 4706 (1995).ADSCrossRefGoogle Scholar
  54. 54.
    H. van Houten and et al, Superlatt. Microstruct. 3, 497 (1988).CrossRefGoogle Scholar
  55. 55.
    G. Dresselhaus, Phys. Rev. 100, 580 (1958).ADSCrossRefGoogle Scholar
  56. 56.
    Y. Bychkov and E. Rashba, JETP Lett. 39, 78 (1984).ADSGoogle Scholar
  57. 57.
    F. Malcher, G. Lommer, and U. Rossler, Phys. Rev. Lett. 60, 729 (1988).Google Scholar
  58. 58.
    H. Mathur and A. D. Stone, Phys. Rev. Lett. 68, 2964 (1992).ADSCrossRefGoogle Scholar
  59. 59.
    A. G. Aronov and Y. B. Lyanda-Geller, Phys. Rev. Lett. 70, 343 (1993).ADSCrossRefGoogle Scholar
  60. 60.
    B. I. Halperin, A. Stern, Y. Oreg, J. Cremers, J. A. Folk, and C. M. Marcus, Phys. Rev. Lett. 86,2106(2001).ADSCrossRefGoogle Scholar
  61. 61.
    A. B. Gougam and et al, J. Low Temp. Phys. 118, 447 (2000).ADSCrossRefGoogle Scholar
  62. 62.
    A. Anthore and et al. preprint cond-mat/0109297.Google Scholar
  63. 63.
    J. Korringa, Physica 16, 601 (1959).ADSCrossRefGoogle Scholar
  64. 64.
    P. Mohanty and R. A. Webb, Phys. Rev. Lett. 84,4481 (2000).ADSCrossRefGoogle Scholar
  65. 65.
    P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).ADSCrossRefGoogle Scholar
  66. 66.
    K. B. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, New York (1997).MATHGoogle Scholar
  67. 67.
    B. D. Simons, O. Agam, and A. V. Andreev, J. Math. Phys. 38, 1982 (1997).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • J. S. Meyer
    • 1
  • V. I. Fal’ko
    • 2
  • B. L. Altshuler
    • 3
    • 4
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  2. 2.Physics DepartmentLancaster UniversityLancasterUK
  3. 3.Physics DepartmentPrinceton UniversityUSA
  4. 4.NECIPrincetonUSA

Personalised recommendations