Advertisement

Improved Decision Procedures for Pure Relevant Logic

Dedicated to Professor Alonzo Church, in his 91st year, and to Professor Saul Kripke, who provided the impetus for these results.
  • Robert K. Meyer
Part of the Synthese Library book series (SYLI, volume 305)

Abstract

We study Church’s “weak implicational calculus” of 1951, which is the pure implicational part R→ of the relevant logic R. We investigate and develop, again following Church, the effect of adding propositional quantifiers to R→; this allows also the specification of a minimal, a De Morgan and finally a Boolean negation. The bulk of the paper deals with finite model properties for various fragments of R, including R→. A modification of an argument due to Saul Kripke is the chief tool in this project, yielding an Infinite Division Prinicple (IDP) for “Church monoids” that facilitates our finitization. Thus systems intermediate between R→ and LR (non-distributive R) have the finite model property and are hence model-theoretically decidable. A concluding section shows how to define various logical particles using Church’s propositional quantifiers, which turns what are conservative extension results at the quantifier-free level into axiomatic extensions when quantifiers are present.

Keywords

Prime Decomposition Axiom Scheme Conservative Extension Finite Model Axiomatic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, W. 1956 Begründung einer strengen Implikation, The Journal of Symbolic Logic, vol. 21, pp. 113–128.CrossRefGoogle Scholar
  2. Anderson, A. R., and N. D. Belnap, Jr. 1975 Entailment, vol. I, Princeton University Press, Princeton, New Jersey.Google Scholar
  3. Anderson, A. R., N. D. Belnap, Jr., and J. M. Dunn 1992 Entailment, vol. II, Princeton University Press, Princeton, New Jersey.Google Scholar
  4. Belnap, N. D. 1993 Life in the undistributed middle, Substructural logics (P. Schroeder-Heister and K. Dosen, editors), Oxford University Press, Oxford, pp. 31–41.Google Scholar
  5. Church, A. 1941 The calculi of lambda-conversion, Princeton University Press, Princeton, New Jersey.Google Scholar
  6. Church, A. 1951 The weak positive implicational propositional calculus (abstract), The Journal of Symbolic Logic, vol. 16, p. 238.Google Scholar
  7. Church, A. 1951a The weak theory of implication, Kontrolliertes Denken, Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften, (A. Menne, A. Wilhelmy, and H. Angsil, editors), Kommissions-Verlag Karl Alber, Munich, pp. 22–37.Google Scholar
  8. Curry, H. B., and R. Feys 1958 Combinatory logic, vol. 1, North-Holland, Amsterdam.Google Scholar
  9. Dickson, L. E. 1913 Finiteness of the odd perfect primitive abundant numbers with n distinct prime factors, American Journal of Mathematics, vol. 35, pp. 413–422.CrossRefGoogle Scholar
  10. Dosen, K. 1993 A historical introduction to substructural logics, Substructural logics (P. Schroeder-Heister and K. Došen, editors), Oxford University Press, Oxford, pp. 1–30.Google Scholar
  11. Dunn, J. M. 1966 The algebra of intensional logics, Doctoral dissertation, University of Pittsburgh, University Microfilms, Ann Arbor; see Anderson and Belnap 1975, pp. 352-369, contributed by Dunn.Google Scholar
  12. Fine, K. 1974 Models for entailment, The Journal of Philosophical Logic, vol. 3, pp. 347–372; an updated version appears in Anderson, Belnap, and Dunn 1992, pp. 208-231.CrossRefGoogle Scholar
  13. Johansson, I. 1936 Der Minimalkalkül, einer reduzierter intuitionistischer Formalismus, Compositio Mathematica, vol. 4, pp. 119–136.Google Scholar
  14. Kripke, S. 1959 The problem of entailment (abstract), The Journal of Symbolic Logic, vol. 24, p. 324.Google Scholar
  15. Meyer, R. K. 1966 Topics in modal and many-valued logic, Doctoral dissertation, University of Pittsburgh, University Microfilms, Ann Arbor.Google Scholar
  16. Meyer, R. K. 1978 The relevant theory of propositions is undecidable, unpublished manuscript.Google Scholar
  17. Meyer, R. K. 1979 A Boolean-valued semantics for R, research paper no. 4, Research School of Social Sciences, Logic Group, Australian National University.Google Scholar
  18. Meyer, R. K., and M. A. McRobbie 1982 Multisets and relevant implication, Australasian Journal of Philosophy, vol. 60, pp. 265–281.CrossRefGoogle Scholar
  19. Meyer, R. K., and H. Ono 1994 The finite model property for BCK and BCIW, Studia Logica, vol. 53, pp. 107–118.CrossRefGoogle Scholar
  20. Orlov, I. E. 1928 The calculus of compatibility of propositions (Russian), Matematicheskii Sbornik, vol. 35, pp. 263–286.Google Scholar
  21. Riche, J. 1991 Decidability, complexity and automated reasoning in relevant logic, Doctoral dissertation, Australian National University, Canberra.Google Scholar
  22. Routley, R., and R. K. Meyer 1973 The semantics of entailment (I), Truth, syntax, modality (H. Leblanc, editor), North-Holland, Amsterdam, pp. 199–243.CrossRefGoogle Scholar
  23. Routley, R., V. Plumwood, R. K. Meyer, and R. T. Brady 1982 Relevant logics and their rivals, Part I, Ridgeview, Atascadero, California.Google Scholar
  24. Shaw-Kwei, M. 1950 The deduction theorems and two new logical systems, Methodos, vol. 2, pp. 56–75.Google Scholar
  25. Slaney, J. K. 1985 3088 varieties. A solution to the Ackermann constant problem, The Journal of Symbolic Logic, vol. 52, pp. 487–501.Google Scholar
  26. Thistlewaite, P. B., M. A. McRobbie, and R. K. Meyer 1988 Automated theorem-proving in non-classical logics, Wiley, New York.Google Scholar
  27. Urquhart, A. 1972 Semantics for relevant logics, The Journal of Symbolic Logic, vol. 37. pp. 159–169; an updated version appears in Anderson, Belnap, and Dunn 1992, pp. 142-155.CrossRefGoogle Scholar
  28. Urquhart, A. 1984 The undecidabilty of entailment and relevant implication, The Journal of Symbolic Logic, vol. 49, pp. 1059–1073; reprinted with additional material in Anderson, Belnap, and Dunn 1992, pp. 348-375.CrossRefGoogle Scholar
  29. Urquhart, A. 1990 The complexity of decision procedures in relevance logic, Truth or consequences: Essays in honor of Nuel Belnap (J. M. Dunn and A. Gupta, editors), Kluwer, London, pp. 61–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Robert K. Meyer

There are no affiliations available

Personalised recommendations