Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 74))

Abstract

A survey is given on a class of birational Weyl group actions which have been proposed by a series of works by Y. Yamada and the author. Examples of type A are discussed in detail. In particular, a proof for the Jacobi-Trudi formula for the τ-cocycle of type A is given in the framework of matrices

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.E. Adler, Nonlinear chains and Painlevé equations, Physica D 37(1994), 335–351.

    Article  Google Scholar 

  2. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122(1996), 49–149.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Fomin and Z. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12(1999), 335–380.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Lusztig, Total positivity in reductive groups, in Lie theory and geometry: in honor of Bertram, Kostant, Progress in Mathematics 123, Birkhäuser, 1994.

    Google Scholar 

  5. I.G. Macdonald, Schur functions: theme and variations, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), 5-39, Publ. Inst. Rech. Math. Av., 498, Univ. Louis Pasteur, Strasbourg, 1992.

    Google Scholar 

  6. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Second Edition, Oxford University Press, 1995.

    Google Scholar 

  7. J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada, Tableau representation for Macdonald’s ninth variations of Schur functions, in Physics and Combinatorics 2000 (Eds. A.N. Kirillov, N. Liskova), pp. 180–195, World Scientific, 2001.

    Google Scholar 

  8. M. Noumi, Painlevé equations: An introduction via symmetry (in Japanese), Asakura Shoten, Tokyo, 2000.

    Google Scholar 

  9. M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé equations, Commun. Math. Phys. 199(1998), 281–295.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Noumi and Y. Yamada, Higher order Painlevé equations of type EquationSource$$ A_l^{(1)} $$ , Funkcial. Ekvac.41}(1998}), 483–503

    MathSciNet  MATH  Google Scholar 

  11. M. Noumi and Y. Yamada, Symmetries in the fourth Painlevé equation and Okamoto polynomials, Nagoya Math. J. 153(1999), 53–86.

    MathSciNet  MATH  Google Scholar 

  12. M. Noumi and Y. Yamada, Affine Weyl group symmetries in Painlevé type equations, in Toward the exact WKB analysis of differential equations, linear or non-linear (Eds. C.J. Howls, T. Kawai, Y. Takei), pp.245–259, Kyoto University Press, Kyoto, 2000.

    Google Scholar 

  13. M. Noumi and Y. Yamada, Birational Weyl group action arising from a nilpotent Poisson algebra, in Physics and Combinatorics 1999 (Eds. A.N. Kirillov, A. Tsuchiya, H. Umemura), pp. 287–319, World Scientific, 2001.

    Google Scholar 

  14. A.P. Veselov and A.B. Shabat, A dressing chain and the spectral theory of the Schrödinger operator, (Russian) Funktsional. Anal. i Prilozhen. 27 (1993), no.2, 1–21; translation in Funct. Anal. Appl. 27(1993), no.2, 81-96.

    MathSciNet  Google Scholar 

  15. Y. Yamada, Determinant formulas for the τ-functions of the Painlevé equations of type A, Nagoya Math. J. 156(1999), 123–134.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Noumi, M. (2002). An Introduction to Birational Weyl Group Actions. In: Fomin, S. (eds) Symmetric Functions 2001: Surveys of Developments and Perspectives. NATO Science Series, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0524-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0524-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0774-3

  • Online ISBN: 978-94-010-0524-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics