Skip to main content

Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 74))

Abstract

Consider random Young diagrams with fixed number n of boxes, distributed according to the Plancherel measure M n. That is, the weight M n(λ) of a diagram λ equals dim2 λ/n!, where dim λ denotes the dimension of the irreducible representation of the symmetric group EquationSource$$ \mathfrak{S}_n $$ indexed by λ. As n → ∞, the boundary of the (appropriately rescaled) random shape λ concentrates near a curve Ω (Logan-Shepp 1977, Vershik-Kerov 1977). In 1993, Kerov announced a remarkable theorem describing Gaussian fluctuations around the limit shape Ω. Here we propose a reconstruction of his proof. It is largely based on Kerov’s unpublished work notes, 1999

In memory of Sergei Kerov (1946–2000)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous and P. Diaconis, Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc 36 (1999), 413–432.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc 12 (1999), 1119–1178.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Baik, P. Deift, and E. Rains, A Fredholm determinant identity and the convergence of moments for random Young tableaux, math/0012117.

    Google Scholar 

  4. Ph. Biane, Representations of symmetric groups and free probability, Advances in Math 138 (1998), 126–181.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ph. Biane, Unpublished work notes.

    Google Scholar 

  6. A. Borodin, A. Okounkov, and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc 13 (2000), 491–515.

    Article  MathSciNet  Google Scholar 

  7. P. Diaconis and S. N. Evans, Linear functionals of eigenvalues of random matrices, Trans. Amer. Math. Soc 353 (2001), 2615–2633.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, J. Applied Prob 31A (1994), 49–62.

    Article  MathSciNet  Google Scholar 

  9. A. Erdelyi (ed.), Higher transcendental functions, Vol. 2, Mc Graw-Hill, 1953.

    Google Scholar 

  10. A. Eskin and A. Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, math/0006171.

    Google Scholar 

  11. W. Feller, An introduction to probability theory and its applications, Vol. II, 2nd edition, Wiley, New York, 1971.

    MATH  Google Scholar 

  12. I. M. Gelfand and N. Ya. Vilenkin, Generalized functions, Vol. 4: Applications of harmonic analysis, Acad. Press, 1964. (Original Russian edition: Fizmat, Moscow, 1961.)

    Google Scholar 

  13. J. M. Hammersley, A few seedlings of research, in: Proc. 6th Berkeley Symp. Math. Stat. and Prob., Vol. 1, Univ. of Calif. Press, 1972, 345–394.

    MathSciNet  Google Scholar 

  14. A. Hora, Central limit theorem for the adjacency operators on the infinite symmetric group, Comm. Math. Phys 195 (1998), 405–416.

    Google Scholar 

  15. V. Ivanov and S. Kerov, The algebra of conjugacy classes in symmetric groups, and partial permutations in: Representation theory, dynamical systems, combinatorial and algorithmical methods III (A. M. Vershik, ed.), Zapiski Nauchnyh Seminarov POMI 256 (1999), 95–120; English translation: J. Math. Sci, to appear. Available via http://www.mathsoc.spb.ru/pers/kerov/publ.html

    Google Scholar 

  16. K. Johansson, On random matrices from the compact classical groups, Ann. Math 145 (1997), 519–545.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J 91 (1998), 151–204.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Johansson, Random permutations and the discrete Bessel kernel, in: Random matrix models and their applications, P. M. Bleher and A. R. Its, Eds., MSRI Publ 40, Cambridge Univ. Press, 2001, 259–269.

    Google Scholar 

  19. K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math 153 (2001), 259–296; math/9906120.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-P. Kahane, Some random series of functions, D. C. Heath and Co., Lexington, MA, 1968.

    MATH  Google Scholar 

  21. S. Kerov, Gaussian limit for the Plancherel measure of the symmetric group, Comptes Rendus Acad. Sci. Paris, Série I, 316 (1993), 303–308.

    MathSciNet  MATH  Google Scholar 

  22. S. Kerov, Transition probabilities of continual Young diagrams and Markov Moment Problem, Funktsion. Anal. i Prilozhen, 27 (1993), No. 2, 32–49. English translation: Funct. Anal. Appl 27 (1993), 104-117.

    MathSciNet  Google Scholar 

  23. S. Kerov, The differential model of growth of Young diagrams, Proc. St. Petersburg Math. Soc 4 (1996), 167–194.

    Google Scholar 

  24. S. Kerov, Interlacing measures, in: Kirillov’s seminar on representation theory, G. Olshanski, Ed., Amer. Math. Soc, Providence, RI, 1998, 35–83.

    Google Scholar 

  25. S. Kerov and G. Olshanski, Polynomial functions on the set of Young diagrams, Comptes Rendus Acad. Sci. Paris Sér. I 319 (1994), 121–126.

    MathSciNet  MATH  Google Scholar 

  26. A. Lascoux and J.-Y. Thibon, Vertex operators and the class algebras of the symmetric groups, math/0102041.

    Google Scholar 

  27. B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Math 26 (1977), 206–222.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press, 1995.

    Google Scholar 

  29. A. Okounkov, Random matrices and random permutations, Intern. Mathem. Research Notices 2000, No. 20, 1043–1095.

    Google Scholar 

  30. A. Okounkov and G. Olshanski, Shifted Schur functions, Algebra i Analiz 9 (1997), No. 2, 73–146. English translation: St. Petersburg Math. J 9 (1998), no. 2.

    Google Scholar 

  31. G. Olshanski, A. Regev and A. Vershik, Frobenius-Schur functions, in: Studies in memory of Issai Schur, A. Joseph, A. Melnikov, and R. Rentschler, Eds., Birkhäuser, to appear; math/0110077.

    Google Scholar 

  32. J. Riordan, Combinatorial identities, Wiley, New York, 1968.

    MATH  Google Scholar 

  33. Yu. Roichman, Upper bound on the characters of the symmetric groups, Invent. Math. 125 (1996), 451–486.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Shiryaev, Probability, Springer-Verlag, New York, 1996.

    Google Scholar 

  35. B. Simon, The P(ϕ)2 Euclidean (quantum) field theory, Princeton Univ. Press, 1974.

    Google Scholar 

  36. R. Speicher, Free calculus, math/0104004.

    Google Scholar 

  37. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publ. Vol. XXIII, New York, 1959.

    Google Scholar 

  38. A. M. Vershik and S. V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux, Doklady Akad. Nauk SSSR 233 (1977), 1024–1027. English translation: Soviet Mathematics Doklady 18 (1977), 527-531.

    Google Scholar 

  39. A. M. Vershik and S. V. Kerov, Asymptotic theory of characters of the symmetric group, Function. Anal. i Prilozhen 15 (1981), No. 4, 15–27. English translation: Funct. Anal. Appl 15 (1985), 246-255.

    MathSciNet  Google Scholar 

  40. A. M. Vershik and S. V. Kerov, Asymptotics of the largest and the typical dimensions of irreducible representations of a symmetric group, Funktsional. Anal. i Prilozhen 19 (1985), No. 1, 25–36. English translation: Funct. Anal. Appl 19 (1985), 21-31.

    Article  MathSciNet  Google Scholar 

  41. D. Voiculescu, Free probability theory: random matrices and von Neumann algebras, in: Proc. ICM-1994, Birkhäuser, 1995, 227–241.

    Google Scholar 

  42. D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monogr. Series, Vol. 1, Amer. Math. Soc., 1992.

    Google Scholar 

  43. A. J. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. Thesis, University of Pennsylvania, 1981.

    Google Scholar 

  44. H. S. Wilf, Generatingfunctionology, 2nd edition, Academic Press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ivanov, V., Olshanski, G. (2002). Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams. In: Fomin, S. (eds) Symmetric Functions 2001: Surveys of Developments and Perspectives. NATO Science Series, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0524-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0524-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0774-3

  • Online ISBN: 978-94-010-0524-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics