Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 48))

Abstract

As is well known, by studying the ac dielectric properties of materials it is rather simple to obtain information on the presence of relaxation processes resulting in additional absorption of energy of the electromagnetic field. These processes can be connected to the structural reorientation of dipoles in the sample and changes in the electronic and ionic characteristics. Besides, these investigations allow to take into account the contribution of surface phenomena to the measured electrical characteristics. Solving these problems is especially interesting for materials at ultrahigh pressures. Measurements over a wide frequency range allow to allocate the contribution in the electrical characteristics bulk of sample, surface, and measuring cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Verechagin, L.F., Yakovlev, E.N., Stepanov, G.N., et.al. (1972) Pressure 2,5 megabars in anvils, made-up from “carbonado”— type diamond, JETF Lett., 16, 240–242.

    Google Scholar 

  2. Verechagin, L.F., Yakovlev, E.N., Vinogradov, B.V., Stepanov, G.N., Bibaev, K.Kh., Alaeva, T.J., Sakun, V.P. (1974) Megabar pressure between anvils, High temperatures, high pressures, 6, 99–505.

    Google Scholar 

  3. Makushkin, A.P. (1984) Study of the intense deformed state of a polymeric layer at introduction in it spherical indenter, Sov. J. Friction and Wear, 5, 823–832.

    Google Scholar 

  4. Babushkin, A.N. (1992) Electrical conductivity and thermal emf of CsI at high pressures, High Pressure Research, 6, 349–356.

    Article  Google Scholar 

  5. Babushkin, A.N., Pilipenko, G.I., Gavrilov, F.F. (1993) The electrical conductivity and thermal electromotive force of lithium hydride and lithium deuteride at 20-50 GPa, J.Phys.: Condens Matter, 5, 8659–8664.

    Article  CAS  Google Scholar 

  6. Babushkin, A.N., Ignatchenko, O.A. (1995) Electrical conductivity and thermo-EMF of the high-pressure phase of CdX and ZnX (X= O, S, Se, Te), Proceed. Joint XV AIRAPT Int. Conf. High Pressure Sci.&Technol., Warsaw, 603–606.

    Google Scholar 

  7. Babushkin, A.N., Babushkina, G.V., Ignatchenko O.A. (1999) Electrical characteristics of dielectric and semiconductors at high pressures in diamond anvil, J. High Pressure School, 1, 32–36, http://www.unipress.waw.pl/ihps.

    Google Scholar 

  8. Impedance Spectroscopy (1988)/ Ed. J.R. Macdonald. N.Y.: Wiley.

    Google Scholar 

  9. Baranova, E.R., Kobelev, V.L., Kobeleva, O.L., Melnikova, N.V., Zlokazov, V.B, Kobelev, L.Ya., Perfiliev, M.V. (1999) Dielectric permeability and electric conductivity of semiconductor ionics (BS)1-x (DAsS2)x (B=Ge,Pb, D=Ag,Cu), Solid State Ionics, 124, 255–261.

    Article  CAS  Google Scholar 

  10. Verechagin, L.F., Yakovlev, E.N., Vinogradov, B.V. (1975) Al2O3, NaCl and S transition into conducted state, JETF Lett, 20, 540–544.

    Google Scholar 

  11. Stepanov, G.N., Yakovlev, E.N., Valyanskaya, T.V. (1979) NaCl superconductivity at high pressures, JETF Lett., 29, 460–463.

    CAS  Google Scholar 

  12. Babushkin, A.N., Babushkina, G.V. (1996) Features of formation high conductivity phases of alkali halides at superhigh pressures, Physics and Chemistry materials treatment (Russia), 3, 19–24.

    Google Scholar 

  13. Li X., Jeanloz R. Measurement of the B1 — B2 transition pressure in NaCl at high temperatures. Phys. Rev. B, 1987, v. 36, No. 1, p. 474–479.

    Article  CAS  Google Scholar 

  14. David, H.G., Hamann, S.D (1958) Sulfur: a possible metallic form, J. Chem. Phys., 28. 1006–1015.

    Article  Google Scholar 

  15. Dunn, K.J., Bundy, F.P. (1977) Electrical behavior of sulfur up to 600 kbar—metallic state, J. Chem. Phys., 67, 5048–5053.

    Article  CAS  Google Scholar 

  16. Bundy, F.P., and Dunn, K.J. (1980) Electrical behavior of Te, Se, and S at very high pressures and low temperatures: Superconduction transition, Phys. Rev. 5, 22, 3157–3164.

    Google Scholar 

  17. Yakovlev, E.N., Vinogradov, B.V., Stepanov, G.N., Timofeev, Yu. A. (1978) Sulphur superconductivity at high pressures, JETF Lett., 28, 369–371.

    CAS  Google Scholar 

  18. Stuzhkin, V.V., Hemley, R.J., Mao Ho-kwang, Timofeev, Yu.A. (1997) Superconductivity at 10-17 K in compressed sulphur, Nature, 390, 382–384.

    Article  Google Scholar 

  19. Luo, H., Desgrenier, S., Vohra, Y.K., and Ruoff, A. L. (1991) High-Pressure Optical Studies on Sulfur to 121 GPa: Optical Evidence for Metallization, Phys. Rev. Lett., 67, 2998–3001.

    Article  CAS  Google Scholar 

  20. Peansky, M.J., Jurgensen, C.W., and Drickamer, H.G. (1984) The effect of pressure on the optical absorption edge of sulfur to 300 kbar, J. Chem. Phys., 81, 6407–6408.

    Article  Google Scholar 

  21. Akahama, Y., Kobayashi, M., and Kawamura, H. (1993) Pressure— induced structural phase transition in sulfur at 83 GPa, Phys. Rev. B, 48, 6862–6864.

    Article  CAS  Google Scholar 

  22. Luo, H., and Ruoff, A.L. (1993) X-ray-diffraction study of sulfur to 32 GPa: Amorphization at 25 GPa, Phys. Rev. B, 48, 569–572.

    Article  CAS  Google Scholar 

  23. Luo, H., Greene, R.G., and Ruoff, A.L. (1993) β-Po Phase of Sulfur at 162 GPa: X-Ray Diffraction Study to 212 GPa, Phys. Rev. Lett., 71, 2943–2946.

    Article  CAS  Google Scholar 

  24. Babushkin, A.N., Kobelev, L. Ya., Babushkina, G.V. (1990) Sulphur electric properties at superhigh pressure around the polymerization temperatures, High Press. Research, 3, 177–179.

    Article  Google Scholar 

  25. Babushkin, A.N., Gunitcheva, Yu.A., Ignatchenko, O.A., Volkova, Y.U. (2000) Relaxation in sulphur at superhigh pressures, Inorganic materials, 36, 191–193.

    Article  Google Scholar 

  26. Babushkin, A.N., Gunitcheva, Yu. A., Shkerin, S.N. (2001) Investigations of the sulphur electrophysical properties by impedance dielectric spectroscopy at superhigh pressures, Inorganic materials, 37, 1–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Babushkin, A.N., Kandrina, Y.A., Kobeleva, O.L., Schkerin, S.N., Volkova, Y.Y. (2001). Impedance Spectroscopy at Super High Pressures. In: Hochheimer, H.D., Kuchta, B., Dorhout, P.K., Yarger, J.L. (eds) Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials. NATO Science Series, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0520-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0520-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0160-4

  • Online ISBN: 978-94-010-0520-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics