Rational Conformal Field Theory In Four Dimensions

  • Nikolay M. Nikolov
  • Yassen S. Stanev
  • Ivan T. Todorov
Part of the NATO Science Series book series (NAII, volume 73)


Recently established rationality of correlation functions in a globally conformal invariant quantum field theory satisfying Wightman axioms is used to construct a family of soluble models in four space-time dimensions. We outline the results for a model of a neutral scalar field ø of dimension 2 . It depends on a positive real parameter c, an analogue of the Virasoro central charge, and admits for all (finite) c an infinite number of conserved symmetric tensor currents. The operator product algebra of ø is shown to coincide with a simpler one, generated by a bilocal scalar field V (x 1, x 2) of dimension (1, 1). The modes of V together with the unit operator span an infinite dimensional Lie algebra Lv whose vacuum (i.e. zero energy lowest weight) representations only depend on the central charge c. Wightman positivity (i.e. unitarity of the representations of Lv) is proven to be equivalent to c ∈ N.


Scalar Field Operator Product Expansion Free Field Stress Energy Tensor Positive Energy Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.M. Polyakov, Zh. Eksp. Teor. Fiz., Pis. Red. 12 (1970) 538 (transi.: Sov.Phys.-JETP Lett. 12(1970)381).ADSGoogle Scholar
  2. [2]
    A.A. Migdal, Phys. Lett. 37B (1971) 386.MathSciNetADSGoogle Scholar
  3. [3]
    G. Parisi, L. Peliti, Lett. Nuovo Cim. 2 (1971) 627.CrossRefGoogle Scholar
  4. [4]
    E. Schreier, Phys. Rev. D3 (1971) 981.ADSGoogle Scholar
  5. [5]
    B. Schroer, Nuovo Cim. Lett. 2 (1971) 867; “Bjorken scaling and scale invariant quantum field theories”, in SCSHS [8].CrossRefGoogle Scholar
  6. [6]
    G. Mack, K. Symanzik, Commun. Math. Phys. 27 (1972) 247.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    K. Symanzik, Nuovo Cim. Lett. 3 (1972) 734.CrossRefGoogle Scholar
  8. [8]
    S. Ferrara, R. Gatto, A. Grillo, G. Parisi, Phys. Lett. 38B (1972) 333; Nuovo Cim. Lett. 4 (1972)115; “General consequences of conformai algebra”, in: Scale and Conformal Symmetry in Hadron Physics (SCSHP), R. Gatto ed., Wiley, New York (1973).ADSGoogle Scholar
  9. [9]
    I.T. Todorov, “Conformai invariant quantum field theory”, in: Strong Interaction Physics, W. Ruhl, A. Vancura eds., Lecture Notes in Physics 17, Springer, Berlin (1972).Google Scholar
  10. [10]
    G. Mack, I.T. Todorov, Phys. Rev. D8 (1973) 1764.ADSGoogle Scholar
  11. [11]
    G. Mack, “Conformai invariant quantum field theory”, in SCSHP (cited in [8]); “Group theoretical approach in conformai invariant quantum field theory”, in: Renormalization and Invariance in Quantum Field Theory, E. Caianiello ed., Plenum Press, New York (1974).Google Scholar
  12. [12]
    A.M. Polyakov, Zh. Eksp. Teor. Fiz. 66 (1974) 23 (transi.: Sov. Phys.-JETP 39 (1974) 10).MathSciNetGoogle Scholar
  13. [13]
    B. Schroer, J.A. Swieca, A.H. Volkel, Phys. Rev. D11 (1975) 1509.ADSGoogle Scholar
  14. [14]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova, I.T. Todorov, Phys. Rev. D13 (1976) 887.ADSGoogle Scholar
  15. [15]
    G. Mack, Commun. Math. Phys. 53 (1977) 155.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    I.T. Todorov, M.C. Mintchev, V.B. Petkova, Conformai Invariance in Quantum Field Theory, Scuola Normale Superiore, Pisa (1978).Google Scholar
  17. [17]
    I.T. Todorov, “Infinite dimensional Lie algebras in conformai QFT models”, in: Conformal Groups and Related Symmetries. Physical Results and Mathematical Background, A.O. Barut, H.-D. Doebner eds., Lecture Notes in Physics 261, Springer, Berlin (1986).Google Scholar
  18. [18]
    J. Cardy, Nucl. Phys. B290 (1987) 355.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    Ya.S. Stanev, Bulg. J. Phys. 15 (1988) 93.Google Scholar
  20. [20]
    K. Lang, W. Ruhl, Nucl. Phys. B402 (1993) 573.MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    H. Osborn, A. Petkou, Ann. Phys. (NY) 231 (1994) 311.MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    E.S. Fradkin, M.Ya. Palchik, Phys. Rep. 300 (1998) 1.MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    F.A. Dolan, H. Osborn, Nucl. Phys. B599 (2001) 459.MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P. Di Francesco, P. Mathieu, D. Senechal, Conformai Field Theories, Springer, Berlin (1996).Google Scholar
  25. [25]
    G. Aratyunov, B. Eden, A.C. Petkou, E. Sokatchev, preprint hep-th/0103230.Google Scholar
  26. [26]
    M. Bianchi, S. Kovacs, G. Rossi, Ya.S. Stanev, preprint hep-th/0104016.Google Scholar
  27. [27]
    N.M. Nikolov, Ya.S. Stanev, LT. Todorov, preprint hep-th/0110230, submitted to J. Phys. A.Google Scholar
  28. [28]
    N.M. Nikolov, I.T. Todorov, Commun. Marth. Phys. 218 (2001) 417.MathSciNetADSMATHCrossRefGoogle Scholar
  29. [29]
    G. Mack, Commun. Math. Phys. 55 (1977) 1.MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That, Benjamin (1964) and Princeton Univ. Press, Princeton (2000).Google Scholar
  31. [31]
    V.G. Kac, A. Radul, Commun. Math. Phys. 157 (1993) 125; Transformation Groups 1 (1996)41.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Nikolay M. Nikolov
    • 1
  • Yassen S. Stanev
    • 2
    • 4
  • Ivan T. Todorov
    • 3
    • 4
  1. 1.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  2. 2.Dipartimento di FisicaUniversità di Roma “Tor Vergata” and I.N.F.N. -Sezione di Roma “Tor Vergata”RomaItaly
  3. 3.Erwin Schrödinger International Institute for Mathematical PhysicsWienAustria
  4. 4.Institute for Nuclear Research and Nuclear EnergyBulgaria

Personalised recommendations