Skip to main content

Aharonov-Bohm Effect in the Quantum Hall Regime and Laplacian Growth Problems

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 73))

Abstract

The shape of an electronic droplet in the quantum Hall effect is sensitive to gradients of the magnetic field, even if they are placed outside the droplet. Magnetic impurities cause a fingering instability of the edge of the droplet, similar to the Saffman-Taylor fingering instability of an interface between two immiscible phases. We discuss the fingering instability and some algebraic aspects of the electronic states in a strong non-uniform field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Agam, E. Bettelheim, P. Wiegmann, A. Zabrodin, “Viscous fingering and electronic droplet in Quantum Hall regime”, Phys. Rev. Lett., submitted, [cond-mat/0111333].

    Google Scholar 

  2. D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman and C. Tang, Rev. Mod. Phys. 58, 977 (1986).

    Article  ADS  Google Scholar 

  3. R. B. Laughlin, in “The Quantum Hall Effect” p. 233, eds. R. E. Prange and S. M. Girvin, Springer (1987).

    Google Scholar 

  4. P. B. Wiegmann and A. Zabrodin, Commun. Math. Phys. 213, 523 (2000); I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann and A. Zabrodin, in “Random Matrix Models and Their Applications”, P. Bleher and A. Its eds., Cambridge Univ. Press (2001), [arXiv: hep-th/0005259]; A. Zabrodin, Theor. and Math. Phys., to appear [arXiv: math/0104169]; A. Marshakov, P. Wiegmann and A. Zabrodin, Commun. Math. Phys., to appear [arXiv:hep-th/0109048]. A. Gorsky, Phys. Lett. B 498 211 (2001); ibid. B 504 362 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P. G. Saffman and G. I. Taylor, Proc. R. Soc. London, Ser. A 245, 2312 (1958).

    MathSciNet  Google Scholar 

  6. B. Shraiman and D. Bensimon, Phys. Rev. A 30, 2840 (1984).

    MathSciNet  ADS  Google Scholar 

  7. H. M. Hastings and L. Levitov, Physica D 116, 244–252 (1998).

    ADS  Google Scholar 

  8. P. Di Francesco, P. Ginsparg, J. Zinn-Justin Phys.Rept. 254 (1995) 1.

    Article  ADS  Google Scholar 

  9. M. Mineev-Weinstein, P. B. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 84, 5106 (2000).

    Article  ADS  Google Scholar 

  10. P. J. Davis, “The Schwarz function and its applications”, The Carus Mathematical Monographs, No. 17, Buffalo, N.Y.: The Math. Association of America, 1974.

    Google Scholar 

  11. S. Richardson, J. Fluid Mech. 56, 609 (1972).

    Article  ADS  MATH  Google Scholar 

  12. A. Cappelli, C. Trugenberger and G. Zemba, Nucl. Phys. B 396 (1993) 465; S. Iso, D. Karabali and B. Sakita, Phys. Lett. B 296, 143 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  13. M. L. Mehta, “Random matrices”, Boston, Acad. Press (1991).

    MATH  Google Scholar 

  14. Ling-Lie Chau and Y. Yu, Phys. Lett A167, 452 (1992); Ling-Lie Chau and O. Zaboronsky, Commun. Math. Phys. 196, 203 (1998).

    MathSciNet  Google Scholar 

  15. J. Ginibre, J. Math. Phys. 6, 440 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wiegmann, P.B. (2002). Aharonov-Bohm Effect in the Quantum Hall Regime and Laplacian Growth Problems. In: Cappelli, A., Mussardo, G. (eds) Statistical Field Theories. NATO Science Series, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0514-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0514-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0761-3

  • Online ISBN: 978-94-010-0514-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics