Skip to main content

Taking N → 0 with S Matrices

  • Chapter
Statistical Field Theories

Part of the book series: NATO Science Series ((NAII,volume 73))

  • 569 Accesses

Abstract

Interesting physical results can be obtained from sigma models by taking the number of fields N to zero. I discuss how one can make sense of this limit by using exact S matrix techniques. I review how this can be done for the case of self-avoiding polymers, and speculate on the application to the replica limit of disordered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Zirnbauer, J. Math. Phys. 37 (1996) 4986 [math-ph/9808012]; A. Altland and M. Zirnbauer, Phys. Rev. B55 (1997) 1142 [cond-mat/9602137].

    Google Scholar 

  2. J.T. Chalker, N. Read, V. Kagalovsky, B. Horovitz, Y. Avishai, A.W.W. Ludwig, “Thermal metal in network models of a disordered two-dimensional superconductor”, cond-mat/0009463, and references therein.

    Google Scholar 

  3. For a survey, see P. Fendley, in New Theoretical Approaches to Strongly Correlated Systems, ed. by A.M. Tsvelik (Kluwer, 2001) [cond-mat/0006360].

    Google Scholar 

  4. I.A. Gruzberg, A. Ludwig, N. Read, Phys. Rev. Lett. 82 (1999) 4524 [cond-mat/9902063].

    Article  ADS  Google Scholar 

  5. S. Guruswamy, A. LeClair and A. W. Ludwig, Nucl. Phys. B 583 (2000) 475 [cond-mat/9909143].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. B. Nienhuis in Phase Transitions and Critical Phenomena, ed. by C. Domb and J. Lebowitz, vol. 11, (Academic Press, 1987).

    Google Scholar 

  7. A. B. Zamolodchikov, Mod. Phys. Lett. A 6 (1991) 1807.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. P. Fendley, Phys. Rev. B 63 (2001) 104429 [cond-mat/0008372].

    Article  ADS  Google Scholar 

  9. P. Fendley, JHEP 0105 (2001) 050 [hep-th/0101034].

    Google Scholar 

  10. S. Hikami, Phys. Lett. B 98 (1981) 208.

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Pruisken, Nucl. Phys. B 235 (1984) 277.

    Article  MathSciNet  ADS  Google Scholar 

  12. F.D.M. Haldane, Phys. Lett. A 93 (1983) 464; for a review, see I. Affleck in Fields, Strings and Critical Phenomena (North-Holland 1988).

    Article  MathSciNet  ADS  Google Scholar 

  13. A.B. Zamolodchikov and Al.B. Zamolodchikov, Nucl. Phys. B 379 (1992) 602.

    Article  MathSciNet  ADS  Google Scholar 

  14. P. de Gennes, Phys. Lett. A 38 (1972) 339.

    Article  ADS  Google Scholar 

  15. P. Fendley and H. Saleur, Nucl. Phys. B 388 (1992) 609 [hep-th/9204094].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Cardy and G. Mussardo, Nucl. Phys. B 410 (1993) 451 [hep-th/9306028].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. Phys. 120 (1979) 253.

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Hasenfratz, M. Maggiore and F. Niedermayer, Phys. Lett. B 245 (1990) 522.

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Fendley, Phys. Rev. Lett. 83 (1999) 4468 [hep-th/9906036].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M. Hortacsu, B. Schroer and H. J. Thun, Nucl. Phys. B 154 (1979) 120.

    Article  ADS  Google Scholar 

  21. F. A. Smirnov, Phys. Lett. B 275 (1992) 109.

    Article  MathSciNet  ADS  Google Scholar 

  22. V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 240 (1984) 312.

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Andrei and J. Lowenstein, Phys. Rev. Lett. 43 (1979) 1698; Phys. Lett. B 90 (1980) 106; B. Berg and P. Weisz, Nucl. Phys. B 146 (1979) 205; R. Koberle, V. Kurak and J. A. Swieca, Phys. Rev. D 20 (1979) 897.

    Article  ADS  Google Scholar 

  24. R. Merkt, M. Janssen, and B. Huckestein, Phys. Rev. B 58 (1998) 4394 [cond-mat/9803342].

    Article  ADS  Google Scholar 

  25. P. Fendley and R. M. Konik, Phys. Rev. B 62 (2000) 9359 [cond-mat/0003436].

    Article  ADS  Google Scholar 

  26. D. C. Cabra, A. Honecker, G. Mussardo and P. Pujol, J. Phys. A 30 (1997) 8415 [hep-th/9705180].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fendley, P. (2002). Taking N → 0 with S Matrices. In: Cappelli, A., Mussardo, G. (eds) Statistical Field Theories. NATO Science Series, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0514-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0514-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0761-3

  • Online ISBN: 978-94-010-0514-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics