Skip to main content

The ODE/IM Correspondence and PT-Symmetric Quantum Mechanics

  • Chapter
Statistical Field Theories

Part of the book series: NATO Science Series ((NAII,volume 73))

Abstract

A connection between integrable quantum field theory and the spectral theory of ordinary differential equations is reviewed, with particular emphasis being given to its relevance to certain problems in PT-symmetric quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Dorey, C. Dunning and R. Tateo, ‘Ordinary differential equations and integrable models’, JHEP Proceedings PRHEP-tmr 2000/034, Nonperturbative Quantum Effects 2000, hep-th/0010148.

    Google Scholar 

  2. P. Dorey, C. Dunning and R. Tateo, ‘Ordinary differential equations and integrable quantum field theories’, Proceedings of the Johns Hopkins workshop on current problems in particle theory 24, Budapest, 2000 (World Scientific 2001).

    Google Scholar 

  3. R.J. Baxter, ‘Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: l.Some fundamental eigenvectors’, Ann. Phys. 76 (1973) 1; ‘2.Equivalence to a generalized ice-type model’, Ann. Phys. 76 (1973) 25; ‘3.Eigenvectors of the transfer matrix and Hamiltonian’, Ann. Phys. 76 (1973) 48.

    Article  ADS  Google Scholar 

  4. A. Klümper and P.A. Pearce, ‘Analytical calculations of Scaling Dimensions: Tricritical Hard Square and Critical Hard Hexagons’, J. Stat. Phys. 64 (1991) 13.

    Article  ADS  MATH  Google Scholar 

  5. A. Kliimper, M.T. Batchelor and P.A. Pearce, ‘Central charges of the 6-and 19-vertex models with twisted boundary conditions’, J. Phys. A24 (1991) 3111.

    ADS  Google Scholar 

  6. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, ‘Integrable Structure of Conformai Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz’, Commun. Math. Phys. 177 (1996) 381, hep-th/9412229.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, ‘Integrable structure of conformai field theory II. Q-operator and DDV equation’, Commun. Math. Phys. 190 (1997) 247, hep-th/9604044.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, ‘Integrable structure of conformai field theory III. The Yang-Baxter relation’, Commun. Math. Phys. 200 (1999) 297, hep-th/9805008.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Y. Sibuya, Global Theory of a second-order linear ordinary differential equation with polynomial coefficient (Amsterdam: North-Holland 1975).

    MATH  Google Scholar 

  10. A. Voros, ‘Semi-classical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators’, J. Physique Lett. 43 (1982) L1; —‘The return of the quartic oscillator. The complex WKB method’, Ann. Inst. Henri Poincaré Vol XXXIX (1983) 211; —‘Exact resolution method for general 1D polynomial Schrödinger equation’, J. Phys. A32 (1999) 5993 (and Corrigendum J. Phys. A34 (2000) 5783), math-ph/9903045.

    Article  Google Scholar 

  11. P. Dorey and R. Tateo, ‘Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations’, J. Phys. A32 (1999) L419, hep-th/9812211.

    MathSciNet  ADS  Google Scholar 

  12. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, ‘Spectral determinants for Schrödinger equation and Q-operators of Conformai Field Theory’, J. Stat. Phys 102 (2001) 567, hep-th/9812247.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Suzuki, ‘Anharmonic Oscillators, Spectral Determinant and Short Exact Sequence of U q \( s{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{l}} \))2’, J. Phys. A32 (1999) L183, hep-th/9902053.

    ADS  Google Scholar 

  14. P. Fendley, ‘Airy functions in the thermodynamic Bethe ansatz’, Lett. Math. Phys. 49 (1999) 229, hep-th/9906114.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Dorey and R. Tateo, ‘On the relation between Stokes multipliers and the T-Q systems of conformai field theory’, Nucl. Phys. B563 (1999) 573, hep-th/9906219.

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Dorey and R. Tateo, ‘Differential equations and integrable models: the SU(3) case’, Nucl. Phys. B571 (2000) 583, hep-th/9910102.

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Suzuki, ‘Functional relations in Stokes multipliers and Solvable Models related to U q (\( s{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{l}} \) 2)’, J. Phys. A33 (2000) 3507, hep-th/9910215.

    ADS  Google Scholar 

  18. J. Suzuki, ‘Functional relations in Stokes multipliers — Fun with x 6 +ax 2 potential’, J. Stat. Phys. 102 (2001) 1029, quant-phys/0003066.

    Article  ADS  MATH  Google Scholar 

  19. P. Dorey, C. Dunning and R. Tateo, ‘Differential equations for general SU(n) Bethe ansatz systems’, J. Phys. A33 (2000) 8427, hep-th/0008039.

    MathSciNet  ADS  Google Scholar 

  20. J. Suzuki, ‘Stokes multipliers, Spectral Determinants and T-Q relations’, nlin-si/0009006.

    Google Scholar 

  21. K. Hikami, ‘The Baxter equation for quantum discrete Boussinesq equation’, Nucl. Phys. B604 (2001) 580, nlin.si/0102021.

    Article  MathSciNet  ADS  Google Scholar 

  22. P. Dorey, C Dunning and R. Tateo, ‘Spectral equivalences, Bethe Ansatz equations, and reality properties in PT-symmetric quantum mechanics’, J. Phys. A34 (2001) 5679, hep-th/0103051.

    MathSciNet  ADS  Google Scholar 

  23. P. Dorey, C Dunning and R. Tateo, ‘Supersymmetry and the spontaneous breakdown of PT symmetry’, J. Phys. A34 (2001) L391, hep-th/0104119.

    MathSciNet  ADS  Google Scholar 

  24. V.V. Bazhanov, A.N. Hibberd and S.M. Khoroshkin, ‘Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory’, hep-th/0105177.

    Google Scholar 

  25. D. Bessis and J. Zinn-Justin, unpublished, circa 1992.

    Google Scholar 

  26. C.M. Bender and S. Boettcher, ‘Real spectra in non-Hermitian Hamiltonians having PT symmetry’, Phys. Rev. Lett. 80 (1998) 4243, physics/9712001.

    Article  MathSciNet  ADS  Google Scholar 

  27. C.M. Bender, S. Boettcher and P.N. Meissinger, ‘PT symmetric quantum mechanics’, J. Math. Phys. 40 (1999) 2201, quant-phys/9809072.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. E. Delabaere and F. Pham, ‘Eigenvalues of complex Hamiltonians with PT symmetry. I’, Phys. Lett. A250 (1998).

    Google Scholar 

  29. E. Delabaere and D. Trinh, ‘Spectral analysis of the complex cubic oscillator’, J. Phys. A33 (2000) 8771.

    MathSciNet  ADS  Google Scholar 

  30. G.A. Mezincescu, ‘Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant’, J. Phys. A33 (2000) 4911, quant-ph/0002056.

    MathSciNet  ADS  Google Scholar 

  31. K.C. Shin, ‘On the eigenproblems of PT-symmetric oscillators’, J. Math. Phys. 42 (2001) 2513.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. C.M. Bender and Q. Wang, ‘Comment on a recent paper by Mezincescu’, J. Phys. A34 (2001) 3325.

    MathSciNet  ADS  Google Scholar 

  33. G.A. Mezincescu, ‘The operator p 2 — (ix)v on L 2(R) (reply to Comment by Bender and Wang)’, J. Phys. A34 (2001) 3329.

    MathSciNet  ADS  Google Scholar 

  34. M. Znojil, ‘PT-symmetric harmonic oscillators’, Phys. Lett. A259 (1999) 220, quant-ph/9905020.

    MathSciNet  ADS  Google Scholar 

  35. B. Bagchi, F. Cannata and C. Quesne, ‘PT-symmetric sextic potentials’, Phys. Lett. A269 (2000) 79, quant-ph/0003085.

    MathSciNet  ADS  Google Scholar 

  36. C.R. Handy and X.Q. Wang, ‘Extension of a Spectral Bounding Method to Complex Rotated Hamiltonians, with Application to p 2 -ix 3’ J. Phys. A34 (2001) 8297, math-ph/0105019.

    MathSciNet  ADS  Google Scholar 

  37. C.M. Bender, S. Boettcher, H. F. Jones, P. Meisinger and M. Simsek, ‘Bound States of Non-Hermitian Quantum Field Theories’, hep-th/0108057.

    Google Scholar 

  38. F. Cannata, M. Ioffe, R. Roychoudhury, P. Roy, ‘A New Class of PT-symmetric Hamiltonians with Real Spectra’, Phys. Lett. A281 (2001) 305.

    MathSciNet  ADS  Google Scholar 

  39. C. Bernard and Van M. Savage, ‘Numerical Simulations of PT-Symmetric Quantum Field Theories’, Phys. Rev. D64 (2001) 085010, hep-lat/0106009.

    ADS  Google Scholar 

  40. V.M. Tkachuk and T.V. Fityo, ‘Factorization and superpotential of the PT-symmetric Hamiltonian’, J. Phys. A34 (2001) 8673.

    MathSciNet  ADS  Google Scholar 

  41. M. Znojil and G. Leva, ‘Spontaneous breakdown of PT symmetry in the solvable squarewell model’, hep-th/0111213.

    Google Scholar 

  42. M. Znojil, ‘Should PT symmetric quantum mechanics be interpreted as nonlinear?’, quant-ph/0103054.

    Google Scholar 

  43. B. Bagchi, C. Quesne and M. Znojil, ‘Generalized Continuity Equation and Modified Normalization in PT-Symmetric Quantum Mechanics’, Mod. Phys. Lett. A16 (2001) 2047.

    MathSciNet  ADS  Google Scholar 

  44. M. Znojil, ‘Conservation of pseudo-norm in PT symmetric quantum mechanics’, math-ph/0104012.

    Google Scholar 

  45. G.S. Japaridze, ‘Space of State Vectors in PT Symmetrical Quantum Mechanics’, quant-ph/0104077.

    Google Scholar 

  46. R. Kretschmer and L. Szymanowski, ‘The Interpretation of Quantum-Mechanical Models with Non-Hermitian Hamiltonians and Real Spectra’, quant-ph/0105054.

    Google Scholar 

  47. A. Mostafazadeh, ‘Pseudo-Hermiticity versus PT Symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian’, math-ph/0107001.

    Google Scholar 

  48. P. Fendley, F. Lesage and H. Saleur, ‘Solving 1-D plasmas and 2-D boundary problems using Jack polynomials and functional relations’, J. Stat. Phys. 79 (1995) 799, hep-th/9409176; — ‘A unified framework for the Kondo problem and for an impurity in a Luttinger liquid’, J. Stat. Phys. 85 (1996) 211, cond-mat/9510055.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. A.A. Andrianov, M.V. Ioffe, V.P. Spiridonov, ‘Higher-Derivative Supersymmetry and the Witten Index’, Phys. Lett. A174 (1993) 273, hep-th/9303005.

    MathSciNet  ADS  Google Scholar 

  50. S.M. Klishevich and M.S. Plyushchay, ‘Nonlinear Supersymmetry, Quantum Anomaly and Quasi-Exactly Solvable Systems’, Nucl. Phys. B606 (2001) 583, hep-th/0012023.

    Article  MathSciNet  ADS  Google Scholar 

  51. S.M. Klishevich and M.S. Plyushchay, ‘Nonlinear holomorphic supersymmetry, Dolan-Grady relations and Onsager algebra’, hep-th/0112158.

    Google Scholar 

  52. H. Aoyama, M. Sato and T. Tanaka, ‘N-fold Supersymmetry in Quantum Mechanics — General Formalism’, Nucl. Phys. B619 (2001) 105, quant-ph/0106037.

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Aoyama, N. Nakayama, M. Sato and T. Tanaka, ‘Classification of Type A N-fold supersymmetry’, Phys. Lett. B521 (2001) 400, hep-th/0108124.

    MathSciNet  ADS  Google Scholar 

  54. R. Sasaki and K. Takasaki, ‘Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry’ J. Phys. A34 (2001) 9533, Erratum-ibid A34 (2001) 10335, hep-th/0109008.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dorey, P., Dunning, C., Tateo, R. (2002). The ODE/IM Correspondence and PT-Symmetric Quantum Mechanics. In: Cappelli, A., Mussardo, G. (eds) Statistical Field Theories. NATO Science Series, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0514-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0514-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0761-3

  • Online ISBN: 978-94-010-0514-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics