Skip to main content

Numerical Simulation of Elastic Anisotropy in Nematic Liquid Crystalline Polymers

  • Chapter
  • 438 Accesses

Part of the book series: NATO Science Series ((NAII,volume 43))

Abstract

This chapter summarizes recent simulation work aimed at understanding elastic anisotropy in nematic liquid crystalline polymers (LCPs) based on a deterministic model that considers the three Prank elastic constants. A tensor expression of the so-called “texture field” is deduced so that the nematic symmetry is conserved automatically. In the absence of an external field, the evolution of the director field can be viewed as a process towards the state of zero elastic torque. The model forms the basis for improved understanding of the mesoscale structures and rheological phenomena of nematic LCPs. It has been tested in its ability to reproduce the Fréedericksz transitions, and simulations of thin LCP films clearly show the effect of elastic anisotropy on the microstructure evolution of the director field. In simulations of bulk samples disclination lines of strength half and escaped integer disclinations are observed. The distortion fields around the disclinations are found to depend on elastic anisotropy. If the twist constant is the lowest, as is the case for main chain LCPs, the disclination lines are predominantly of the twist type. Under shear flow, the simulation shows that the “log-rolling” orientation of the directors emerges for the tumbling nematics if the twist constant is smaller than the splay and the bend constants. The interaction of the wedge disclination pairs subject to a shear flow field is also simulated. The generation, multiplication and interaction of inversion wall defects during shearing have been revealed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lebwohl, P.A. and Lasher G. (1972) Phys. Rev. A, 6, 426.

    Article  ADS  Google Scholar 

  2. Bedford, S.E., Nicholson, T.M. and Windle, A.H. (1991) Liq. Cryst., 10, 63.

    Article  Google Scholar 

  3. Bedford, S.E. and Windle, A.H. (1993) Liq. Cryst., 15, 31.

    Article  Google Scholar 

  4. Assender, H.E. and Windle, A.H. (1994) Macromolecules, 27, 3439.

    Article  ADS  Google Scholar 

  5. Windle, A.H., Assender, H.E. and Lavine, M.S., (1994), Proc. R. Soc. Lond. A, 348, 73.

    ADS  Google Scholar 

  6. Hobdell, J. and Windle, A.H. (1997) Liq. Cryst., 23, 157.

    Article  Google Scholar 

  7. Gruhn, T. and Hess, S. (1996) Z. Naturforsch., 51a, 1.

    Google Scholar 

  8. Romano, S. (1998) Int. J. Mod. Phys. B, 12, 2305.

    Article  ADS  Google Scholar 

  9. Luckhurst, G.R. and Romano, S. (1999) Liq. Cryst., 26, 871.

    Article  Google Scholar 

  10. Denniston, C. (1996) Phys. Rev. B, 54, 6272.

    Article  ADS  Google Scholar 

  11. Derfel, G. (1998) Liq. Cryst, 24, 829.

    Article  Google Scholar 

  12. Kilian, A. (1994) Phys. Rev. E, 50, 3774.

    Article  ADS  Google Scholar 

  13. Kilian, A. and Hess, S. (1989) Z. Naturforsch., 44 a, 693.

    Google Scholar 

  14. Kilian, A. and Hess, S. (1990) Liq. Cryst, 8, 465.

    Article  Google Scholar 

  15. Qian, R., Chen, S. and Song, W. (1995) Macromol. Symp., 96, 27.

    Article  Google Scholar 

  16. Donald, A.M. and Windle, A.H. (1992) Liquid Crystalline Polymers. Cambridge University Press.

    Google Scholar 

  17. Meyer, R.B. (1982) in Polymer Liquid Crystals. Krigbaum, W.R., Ciferri, A. and Meyer, R.B. (eds.), Academic Press.

    Google Scholar 

  18. De’Néve, T., Kléman, M. and Navard, P. (1995) Liq. Cryst., 18, 67.

    Article  Google Scholar 

  19. Tu, H., Goldbeck-Wood, G. and Windle, A.H., submitted to Phys. Rev. E.

    Google Scholar 

  20. Tu, H., Goldbeck-Wood, G. and Windle, A.H., submitted to Liq. Cryst..

    Google Scholar 

  21. Tu, H., Goldbeck-Wood, G. and Windle, A.H., submitted to Liq. Cryst..

    Google Scholar 

  22. De Gennes, P.G. and Prost, J. (1993) The Physics of Liquid Crystals. Clarendon Press.

    Google Scholar 

  23. Beris, A.N. and Edwards, B.J. (1994) Thermodynamics of flowing systems with internal microstructure. Oxford Science Publications.

    Google Scholar 

  24. Vertogen, G. and deJeu, W.H (1988) Thermotropic Liquid Crystals. Springer-Verlag.

    Google Scholar 

  25. Hudson, S.E. and Thomas, E.L. (1989) Phys. Rev. Lett., 62, 1993.

    Article  ADS  Google Scholar 

  26. Song, W. Fan, X., Windle, A.H., Chen, X. and Qian, R., in preparation.

    Google Scholar 

  27. Ranganath, G.S. (1983) Mol. Cryst. Liq. Cryst., 97, 77.

    Article  Google Scholar 

  28. Chuang, I., Yurke, B., Pargellis, A.N. and Turok, N. (1993), Phys. Rev. E, 47, 3343.

    Google Scholar 

  29. Anisimov, S.I. and Dzyaloshinskii, I.E. (1973) Sov. Phys. JETP, 36, 774.

    ADS  Google Scholar 

  30. Cladis, P.E., (1972) J. Physique, 33, 591.

    Article  Google Scholar 

  31. Hobdell, J. and Windle, A.H., (1995) Liq. Cryst., 19, 401.

    Article  Google Scholar 

  32. Larson, R.G. (1990) Macromolecules, 23, 3983.

    Article  ADS  Google Scholar 

  33. Romo-Uribe, A. and Windle, A.H. (1996) Macromolecules, 29, 6246.

    Article  ADS  Google Scholar 

  34. Burghardt, W.R. (1998) Macromol. Chem. Phys., 199, 471.

    Article  Google Scholar 

  35. Goldbeck-Wood, G., Coulter, P., Hobdell, J.R., Lavine, M.S., Yonetake, K. and Windle, A.H. (1998) Molecular Simulation, 21, 143.

    Article  Google Scholar 

  36. Han, W.H. and Rey, A.D. (1993) J. Non-Newt. Fluid Mech., 48, 181.

    Article  MATH  Google Scholar 

  37. Rey, A.D. (1990) J. Rheol., 34, 425.

    Article  ADS  MATH  Google Scholar 

  38. Chang, R., Shiao, F. and Yang, W. (1994) J. Non-Newt Fluid Mech., 55, 1.

    Article  Google Scholar 

  39. Rey, A.D. and Tsuji, T. (1998) Macromol. Theory Simul., 7, 623.

    Article  Google Scholar 

  40. Derfel, G. and Radomska, B. (1997) Liq. Cryst., 23, 741.

    Article  Google Scholar 

  41. Lavine, M.S. and Windle, A.H. (1997) Macromol. Symp., 124, 35.

    Article  Google Scholar 

  42. Goldbeck-Wood, G. and Windle, A.H. (1999) Rheology ACTA, 38, 537.

    Article  Google Scholar 

  43. Nehring, J. and Saupe, A. (1972) J. Chem. Soc. Faraday Trans., II 68, 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tu, H., Goldbeck-Wood, G., Windle, A.H. (2001). Numerical Simulation of Elastic Anisotropy in Nematic Liquid Crystalline Polymers. In: Lavrentovich, O.D., Pasini, P., Zannoni, C., Žumer, S. (eds) Defects in Liquid Crystals: Computer Simulations, Theory and Experiments. NATO Science Series, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0512-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0512-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0170-3

  • Online ISBN: 978-94-010-0512-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics