Skip to main content

Molecular Simulations and Theory of Planar Interfaces and Defects in Nematic Liquid Crystals

  • Chapter
  • 433 Accesses

Part of the book series: NATO Science Series ((NAII,volume 43))

Abstract

Monte Carlo and molecular dynamics simulations have been carried out for simple models of liquid crystals. The results are compared with predictions of coarse-grained theories, based on Oseen-Frank orientational elasticity, Landau-de Gennes order tensor theory, and the Onsager density functional. A variety of inhomogeneous systems have been studied, including planar interfaces with containing walls, the equilibrium nematicisotropic interface, a disclination defect, and a colloidal suspension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Miguel, E., Martín del Río, E., Brown, J.T., and Allen, M.P. (1996) J. Chem. Phys., 105, 4234.

    Article  ADS  Google Scholar 

  2. Brown, J.T., Allen, M.P., Martín del Río, E. and de Miguel, E. (1998) Phys. Rev. E, 57, 6685.

    Article  ADS  Google Scholar 

  3. Camp, P.J. and Allen, M.P. (1997) J. Chem. Phys., 106, 6681.

    Article  ADS  Google Scholar 

  4. Camp, P.J. and Allen, M.P. and Masters, A.J. (1999) J. Chem. Phys., 111, 9871.

    Article  ADS  Google Scholar 

  5. Vanduijneveldt, J.S. and Allen, M.P. (1997) Molec. Phys., 92, 855.

    ADS  Google Scholar 

  6. Lyulin, A.V., Al-Barwani, M.S., Allen, M.P., Wilson, M.R., Neelov, I. and Allsopp, N.K. (1998) Macromolecules, 31, 4626.

    Article  ADS  Google Scholar 

  7. Vanduijneveldt, J.S., Gilvillegas, A., Jackson, G., and Allen, M.P. (2000) J. Chem. Phys., 112, 9092.

    Article  ADS  Google Scholar 

  8. Allen, M.P. and Tildesley, D.J. (1989) Computer simulation of liquids. paperback ed., Clarendon Press, Oxford, ISBN 0-19-855645-4, 385pp.

    Google Scholar 

  9. Frenkel D. and Smit, B. (1996) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, ISBN 0-12-267370-0.

    MATH  Google Scholar 

  10. Oseen, C. (1933) Trans. Faraday Soc., 29, 883.

    Article  Google Scholar 

  11. Frank, F.C. (1958) Discuss. Faraday Soc., 25, 19.

    Article  Google Scholar 

  12. de Gennes, P.G. and Prost, J. The Physics of Liquid Crystals. 2nd, paperback ed., Clarendon Press, Oxford.

    Google Scholar 

  13. Onsager, L. (1949) Ann. N. Y. Acad. Sci. 51, 627.

    Article  ADS  Google Scholar 

  14. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1992) Numerical Recipes in Fortran. 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  15. Allen, M.P. (1999) Molec. Phys., 96, 1391.

    Article  ADS  Google Scholar 

  16. Allen, M.P. (2000) in Advances in the Computer Simulations of Liquid Crystals. Vol. 545 of NATO ASI Series C, C. Zannoni and P. Pasini (eds), Kluwer Academic Publishers Dordrecht, pp. 73–97, ISBN 0-7923-6099-0.

    Google Scholar 

  17. Andrienko, D, Germano, G. and Allen, M.P. (2000) Phys. Rev. E, 62, 6688.

    Article  ADS  Google Scholar 

  18. Bates M.A. and Zannoni, C. (1997) Chem. Phys. Lett., 280, 40.

    Article  ADS  Google Scholar 

  19. Bates, M.A. (1998) Chem. Phys. Lett., 288, 209.

    Article  ADS  Google Scholar 

  20. Allen, M.A. (2000) J. Chem. Phys., 112, 5447.

    Article  ADS  Google Scholar 

  21. Vanroij, R., Dijkstra, M. and Evans, R. (2000) Europhys. Lett., 49, 350.

    Article  ADS  Google Scholar 

  22. Vanroij, R., Dijkstra, M. and Evans, R. (2000) J. Chem. Phys., 113, 7689.

    Article  ADS  Google Scholar 

  23. Al-Barwani M.S. and Allen, M.P. (2000) Phys. Rev. E, 62, 6706.

    Article  ADS  Google Scholar 

  24. Koch D.L. and Harlen, O.G. (1999) Macromolecules, 32, 219.

    Article  ADS  Google Scholar 

  25. Schofield P. and Henderson, J.R. (1982) Proc Roy. Soc. Lond. A, 379, 231.

    Article  ADS  MATH  Google Scholar 

  26. Harasima, A. (1958) Adv. Chem. Phys., 1, 203.

    Article  Google Scholar 

  27. Irving, J.H. and Kirkwood, J.G. (1950) J. Chem. Phys., 18, 817.

    Article  MathSciNet  ADS  Google Scholar 

  28. Perram, J.W., Wertheim, M.S., Lebowitz, J.L. and Williams, G.O. (1984) Chem. Phys. Lett., 105, 277.

    Article  ADS  Google Scholar 

  29. Perram, J.W., Wertheim (1985) J. Comput. Phys., 58, 409.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. McDonald, A.J., Allen, M.P. and Schmid, F. (2000) Phys. Rev. E, 63, 010701(R).

    Google Scholar 

  31. Allen, M.P. (2000) Chem. Phys. Lett. 331, 513.

    Article  ADS  Google Scholar 

  32. Akino, N., Schmid, F. and Allen, M.P. Phys. Rev. E, submitted.

    Google Scholar 

  33. Andrienko, D. and Allen, M.P. (2000) Phys. Rev. E, 61, 504.

    Article  ADS  Google Scholar 

  34. Hudson, S.D. and Larson, R.G. (1993) Phys. Rev. Lett., 70, 2916.

    Article  ADS  Google Scholar 

  35. Schopohl, N. and Sluckin, T.J. (1987) Phys. Rev. Lett, 59, 2582.

    Article  ADS  Google Scholar 

  36. Schopohl, N. (1988) Phys. Rev. Lett., 60, 755.

    Article  ADS  Google Scholar 

  37. Poulin, P., Stark, H., Lubensky, T.C. and Weitz, D.A. (1997) Science, 275, 1770.

    Article  Google Scholar 

  38. Lubensky, T.C., Pettey, D., Currier, N. and Stark, H. (1988) Phys. Rev. E, 57, 610.

    Article  ADS  Google Scholar 

  39. Kuksenok, O.V., Ruhwandl, R.W., Shiyanovskii, S.V. and Terentjev, E.M. (1996) Phys. Rev. E, 54, 5198.

    Article  ADS  Google Scholar 

  40. Ruhwandl, R.W. and Terentjev, E.M. (1997) Phys. Rev. E, 56, 5561.

    Article  ADS  Google Scholar 

  41. Stark, H. (1999) Euro. Phys. J. B, 10, 311.

    Article  ADS  Google Scholar 

  42. Billeter, J.L. and Pelcovits, R.A. (2000) Phys. Rev. E, 62, 711.

    Article  ADS  Google Scholar 

  43. Andrienko, D., Germano, G. and Allen, M.P. Phys. Rev. E, to appear.

    Google Scholar 

  44. Shiyanovskii, S.V. and Kuksenok, O.V. (1998) Mol. Cryst Liq. Cryst., 321, 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Allen, M.P. (2001). Molecular Simulations and Theory of Planar Interfaces and Defects in Nematic Liquid Crystals. In: Lavrentovich, O.D., Pasini, P., Zannoni, C., Žumer, S. (eds) Defects in Liquid Crystals: Computer Simulations, Theory and Experiments. NATO Science Series, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0512-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0512-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0170-3

  • Online ISBN: 978-94-010-0512-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics