Advertisement

Interface connections in domain decomposition methods

  • Frédéric Nataf
Part of the NATO Science Series book series (NAII, volume 75)

Abstract

Parallel computers are increasingly used in scientific computing. They enable one to perform large scale computations. New algorithms which are well suited to such architectures have to be designed. Domain decomposition methods are a very natural way to exploit the possibilities of multiprocessor computers, but such algorithms are very useful when used on monoprocessor computers as well.

Keywords

Convergence Rate Interface Condition Domain Decomposition Domain Decomposition Method Absorb Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK95]
    Y. Achdou and Y. A. Kuznetsov, Substructuring preconditioners for finite element methods on nonmatching grids, East-West J. Numer. Math. 3 (1) (1995), 1–28.MathSciNetzbMATHGoogle Scholar
  2. [AKP95]
    Y. Achdou, Y. Kuznetsov, and 0. Pironneau, Substructuring preconditioners for the Q1 mortar element method, Numer. Math. 71 (1995), 419–449.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [AMW99]
    Y. Achdou, Y. Maday, and O. B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal. 36 (2) (1999), 551–580.MathSciNetCrossRefGoogle Scholar
  4. [ATNVOO]
    Y. Achdou, P. L. Tallec, F. Nataf, and M. Vidrascu, A domain decoposition preconditioner for an advection-diífusion problem, Comput. Methods Appl. Mech. Engrg. 184 (2000), 145–170.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [BD98]
    D. Braess and W. Dahmen, Stability estimates of the mortar finite element method for 3-dimensional problems, East-West J. Numer. Math. 6 (4) (1998), 249–264.MathSciNetzbMATHGoogle Scholar
  6. [BGLTV]
    J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in: Domain Decomposition Methods (T. Chan et al., eds.), SIAM, Philadelphia, PA, 1989, 3–16.Google Scholar
  7. [BMP93]
    C. Bernardi, Y. Maday, and A. T. Patera, Domain decomposition by the mortar element method, in: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (H. G. Kaper and M. Garbey, eds.), NATO ASI Ser. C 384, Kluwer, Dordrecht, 1993, 269–286.CrossRefGoogle Scholar
  8. [CCEW98]
    X.-C. Cai, M. A. Casarin, F. W. Elliott Jr., and 0. B. Widlund, Overlapping Schwarz algorithms for solving Helmholtz’s equation, in: Domain Decomposition Methods 10 (J. Mandel et al, eds.), Contemp. Math. 218, Amer. Math. Soc., Providence, RI, 1998, 391–399.CrossRefGoogle Scholar
  9. [CDS99]
    X.-C. Cai, M. Dryja, and M. V. Sarkis, Overlapping nonmatching grid mortar element methods for elliptic problems, SIAM J. Numer. Anal. 36 (1999), 581–606.MathSciNetCrossRefGoogle Scholar
  10. [CGJOO]
    F. Collino, S. Ghanemi, and P. Joly, Domain decomposition methods for harmonic wave propagation : a general presentation, Comput. Methods Appl. Mech. Engrg. (2-4) (2000), 171–211.MathSciNetCrossRefGoogle Scholar
  11. [CGPW89]
    T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Domain Decomposition Methods, SIAM, Philadelphia, PA, 1989.zbMATHGoogle Scholar
  12. [Che98]
    P. Chevalier, Méthodes numériques pour les tubes hyperfréquences. Résolution par décomposition de domaine, Ph.D. thesis, Université Paris VI, 1998.Google Scholar
  13. [CM94]
    T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in: Acta Numerica 1994, Cambridge University Press, 1994, 61–143.Google Scholar
  14. [CMW95]
    L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for mixed finite elements, Math. Comp. 64 (211) (1995), 989–1015.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [CW92]
    X.-C. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput. 13 (1) (1992), 243–258.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Des93]
    B. Després, Domain decomposition method and the Helmholtz problem. II, in: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), SIAM, Philadelphia, PA, 1993, 197–206.Google Scholar
  17. [DJR92]
    B. Després, P. Joly, and J. E. Roberts, A domain decomposition method for the harmonic Maxwell equations, in: Iterative Methods in Linear Algebra (Brussels, 1991), North-Holland, Amsterdam, 1992, 475–484.Google Scholar
  18. [DSW96]
    M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math. 72 (3) (1996), 313–348.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [EM77]
    B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (139) (1977), 629–651.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [EZ98]
    B. Engquist and H.-K. Zhao, Absorbing boundary conditions for domain decomposition,Appl. Numer. Math. 27 (4) (1998), 341–365.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [FR9l]
    C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg. 32 (1991), 1205–1227.zbMATHCrossRefGoogle Scholar
  22. [Giv92]
    D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier (1992).zbMATHGoogle Scholar
  23. [GMN01]
    M. J. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Numer. Anal (2001), to appear.Google Scholar
  24. [Hig86]
    R. Higdon, Absorbing boundary conditions for difference approximations to the multi-dimensional wave equations, Math. Comp. 47 (176) (1986), 437–459.MathSciNetzbMATHGoogle Scholar
  25. [HTJ88]
    T. Hagstrom, R. P. Tewarson, and A. Jazcilevich, Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems, Appl. Math. Lett. 1 (3), 1988.Google Scholar
  26. [Jap98]
    C. Japhet, Optimized Krylov-Ventcell method, Application to convection-diffusion problems, in: Proc. 9th International Conference Domain Decomposition Methods (P. E. Bjørstad et al., eds.), 1998, 382–389.Google Scholar
  27. [JN00]
    C. Japhet and F. Nataf, The best interface conditions for domain decomposition methods: Absorbing boundary conditions, to appear in: Artificial Boundary Conditions, with Applications to Computational Fluid Dynamics Problems (L. Tourrette, ed.), Nova Science, 2000.Google Scholar
  28. [JNR01]
    C. Japhet, F. Nataf, and F. Rogier, The optimized order 2 method. Application to convection-diffusion problems, Future Generation Computer Systems FUTURE 18, 2001.Google Scholar
  29. [KW01]
    A. Klawonn and O. B. Widlund, FETI and Neumann-Neumann iterative sub-structuring methods: Connections and new results, Comm. Pure Appl. Math. 54 (2001), 57–90.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [LBCW98]
    Proc. Eleventh International Conference Domain Decomposition Methods, 1998 (C. H. Lai et al., eds.).Google Scholar
  31. [Lio9O]
    P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains, in: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (T. F. Chan et al., eds.), SIAM, Philadelphia, PA, 1990.Google Scholar
  32. [LT94]
    P. Le Tallec, Domain decomposition methods in computational mechanics, in:Computational Mechanics Advances vol. 1 (2) (J. Tinsley Oden, ed.), North-Holland, Amsterdam, 1994, 121–220.Google Scholar
  33. [Nat96]
    F. Nataf, Absorbing boundary conditions in block Gauss-Seidel methods for convection problems, Math. Models Methods Appl. Sci. 6 (4) (1996), 481–502.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [Nep9l]
    S. V. Nepomnyaschikh, Application of domain decomposition to elliptic problems on with discontinuous coefficients, in: Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski et al., eds.), SIAM, Philadelphia, PA, 1991, 242–251.Google Scholar
  35. [Nie99]
    F. Nier, Remarques sur les algorithmes de décomposition de domaines, in: Séminaire : ïquations aux Dérivées Partielles, 1998-1999, Exp. No. IX, 26, ïcole Polytechnique, 1999.Google Scholar
  36. [NR95]
    F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, Math. Models Methods Appl. Sci. 5 (1) (1995), 67–93.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [NRdS94]
    F. Nataf, F. Rogier, and E. de Sturler, Optimal interface conditions for domain decomposition methods, Technical report, CMAP (ïcole Polytechnique), 1994.Google Scholar
  38. [PEBK97]
    Proc. Ninth International Conference on Domain Decomposition Methods, 1997, (M. S. Espedal el al., eds.).Google Scholar
  39. [QV99]
    A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Sci. Publ., Oxford University Press, 1999.zbMATHGoogle Scholar
  40. [SBG96]
    B. F. Smith, P. E. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.zbMATHGoogle Scholar
  41. [WFNS98]
    F. Willien, I. Faille, F. Nataf, and F. Schneider, Domain decomposition methods for fluid flow in porous medium, in: 6th European Conference on the Mathematics of Oil Recovery, 1998.Google Scholar
  42. [Woh99]
    B. Wohlmuth, Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers, SIAM J. Numer. Anal 36 (1999), 1636–1658.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Frédéric Nataf
    • 1
  1. 1.CMAP, CNRS UMR7641École PolytechniquePalaiseauFrance

Personalised recommendations